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SIMULTANEOUS COEFFICIENT ASSIGNMENT OF DISCRETE-TIME
MULTI-INPUT MULTI-OUTPUT LINEAR TIME-VARYING SYSTEM: A NEW
APPROACH FOR COMPENSATOR DESIGN*

BUOY K. GHOSH! AND PAUL R. BOUTHELLIER'?

Abstract. In this paper, a linear time-varying input-output system is considered and its realization as a
linear time-varying autoregressive moving average system (ARMA) is studied. A time-varying z-transform is
also introduced and its properties are studied. Furthermore a time-varying version of the coefficient assignment
problem well known in time invariant system theory as the pole placement problem is posed and analyzed. A
r-tuple of discrete time, linear time-varying plants with m inputs and p outputs are considered together with a
single p input m output linear time-varying compensator. The design objective is to construct a single compensator
that “coefficient assigns,” and hence “bounded input bounded output stabilizes” under suitable additional technical
assumptions, the set of r plants simultaneously in the closed loop. Such a problem is useful in robust design
of linear time-varying control systems in the closed loop. Among the results, it is shown that a generic r-tuple
of p x m plants (in a suitable topology) is simultaneously coefficient assignable, provided that r < m/p. The
design procedure involves splitting the closed-loop system into an ARMA system in cascade with a moving
average system. The coefficient assignment problem consists of assigning the coefficients of the autoregressive
part of the ARMA subsystem. Thereby an algorithm is obtained that is nonrecursive and involves solving for
each time instant a system of linear equations with time-varying coefficients. The associated time-varying matrix
has the “Sylvester matrix structure.” Such a structure is well-known in pole placement of time-invariant systems
by dynamic compensation. Additionally the problem of coefficient assignment of the autoregressive part of the
ARMA system is considered in the closed loop, without splitting up into a cascade of two subsystems as before. A
new recursive algorithm to analyze this problem has been introduced. The proposed algorithm has no counterpart
in the time-invariant system design and thus represents a new design procedure. A special case of this algorithm
for the single-input single-output system has been described in detail. An interesting feature of the proposed
recursive algorithm is that one obtains a nonlinear recursion on the compensator parameters that would assign a
prespecified sequence of coefficients for the closed-loop system. For a specific design problem it is shown that
the dynamics of this nonlinear recursion is chaotic.
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dynamics
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1. Introduction. Motivated by earlier successes in the field of simultaneous system
design (see [1]-[7]) for linear time-invariant systems, in this paper the same general idea is
applied to linear time-varying (LTV) systems as well. The motivation for considering time-
varying systems is as follows. Many systems are time varying because they switch modes
frequently (namely, high-performance aircrafts, power systems undergoing several modes
of failure, etc.). Time-varying systems also arise from nonlinear systems linearized along
a nominal trajectory. Furthermore, time-varying systems also arise from linear systems,
where the parameters are perturbed by a time-varying function. A feedback design strategy
that leads to a time-varying system is adaptive control, wherein the time variation is a
result of real time adaptation. An important pair of problems in the design of time-varying
systems is described as follows.

PROBLEM 1.1 (stability criterion). Given a class of linear time-varying systems. What
condition on the parameters of the systems would guarantee bounded-input bounded-output
(BIBO) stability?

PROBLEM 1.2 (stability criterion). If a linear time-varying system is not already BIBO
stable, find a linear time-varying output feedback compensator such that the closed-loop
system is BIBO stable.
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Fic. 1.1. Closed-loop system corresponding to (G?,C).

The main problem of ascertaining stability of a linear time-varying system is that the
problem is not equivalent to localizing the eigenvalues of a possibly time-varying matrix to
a certain region of the complex plane. In fact, a time-varying system stable in frozen time
(i.e., stable for each time instance) is. not necessarily a stable time-varying system (see [8]
and [9]). Stability can be ascertained, however, if the parameters of the system are varying
sufficiently slowly. It has been shown by Desoer [10] that there exists open regions of
the parameter space with the property that if the parameter vector of the system resides in
such a region for all times, then the associated time-varying system is indeed stable (see
also [11]-[13]). A sufficiency criterion for stabilizing a time-varying system is, therefore,
one of choosing a compensator that localizes the coefficients of the closed-loop system to
within such an open region. For reasons of robustness and fault tolerance, however, one is
interested in stabilizing, not just a single plant, but an entire r-tuple of plants. This problem
is now described as follows.

PROBLEM 1.3 (simultaneous stabilizability problem). Given an r-tuple of linear time-

varying plants G',G?,...,G", find, if possible, a linear time-varying output feedback com-
pensator C that simultaneously stabilizes each one of the closed-loop systems (G7,C),j =
I,...,T.
In Problem 1.3 (G7,C) denotes the closed-loop system described in Fig." 1.1. For.an
introduction to the simultaneous stabilization problem for time-invariant systems, we refer
to [1]-[3]. The main idea is that G' is a nominal plant, which, as a result of sudden
component failures, may take up 7 — 1 additional different modes G?,...,G". The design
goal is to construct a compensator that stabilizes the nominal plant together with all its
failed modes simultaneously. To obtain a tighter control on the response of the closed-loop
system, we consider the following problem.

PROBLEM 1.4 (simultaneous coefficient assignment problem). Given an r-tuple of m
input p output autoregressive moving average (ARMA) models of lag £, denoted by {G’}
and defined by

[4 [4
(1. v+ D Dilidye=, = ) Ni(@)vewr.
i=1

1=|

When does there exist a compensator C of lag ¢, defined by

q q
0 up + Y Deliui_, = Y Neli)ye-,
" =1 ==()

Uy =uk—u;‘:,
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that will assign the coefficients A{(i) of the equations of the closed-loop systems that
(G7.C) described as

‘ £+q ’ Fiq
(1.3) AL+ Y ALk = D rhliuk— = 1,7
iz=1 1=0

The main contributions of this paper are now described. In §2 we consider a general
linear input—output map and obtain a necessary and sufficient condition as to when such a
map is realizable as a linear time-varying ARMA model of finite lag. We introduce left
and right fraction representation of an LTV system and show via examples that, unlike
the time-invariant case, the existence of one does not imply the existence of the other.
However, in a suitable topology on the space of LTV ARMA systems, a generic system is
shown to admit either of the two representations. In §3, we pose and analyze a simplified
coefficient assignment problem. The proposed problem consists of splitting the closed-loop
system into a cascade of ARMA and a moving average subsystem. The problem considered
is to assign the coefficients of the autoregressive part of the ARMA subsystem. We show
that the solution to the problem consists of analyzing linear equations with time-varying
matrices. Under a suitable topology we consider an r-tuple of m-input p-output plants and
show that a sufficient condition for the proposed coefficient assignment problem is given by
rp < m+p. Under an additional technical condition (3.29) the above inequality is shown to
be sufficient for simultaneous stabilization of the r-tuple of plants as well. In §4 we consider
the closed-loop system as a single ARMA system and propose assigning the coefficients of
the autoregressive part. The coefficient assignment problem is considered when 7 = 1 and
m and p are arbitrary. A nonlinear time-varying iteration scheme that recursively assigns the
coefficients of such time-varying systems in the closed-loop is described. Such an iterative
scheme appears to be new in the literature and has no counterpart in the time-invariant
system theory.

The main technique that we use in this paper is that of a time-varying version of the
z-transform as part of an operational algebra for discrete-time, linear time-varying systems.
Such an operational algebra has also been used previously by Kamen, Khargonekar, Poolla,
and Hwang [14}-{17]. More recently a continuous-time version of the above operational
algebra is being used by Tsakalis and Ioannou [18] and [19].

The main idea of this paper is to describe a time-varying version of the return difference
matrix and to ensure that the coefficients of this matrix can be assigned arbitrarily under
a sufficiency condition. Such a sufficiency condition in principal is a generalization of the
results on “pole placement by dynamic compensation™ for linear time-invariant systems (see
{201-[22]). The time-varying nature of the problem considered here imposes restrictions that
did not exist in the literature concerning time-invariant systems. For example, we see in this
paper that a coefficient-assigning compensator for a single-input single-output plant can be
obtained by solving a nonlinear difference equation recursively. When restricted to time-
invariant parameters, the difference equation reduces to the well-known linear algebraic
equation of the type Sz = b, where S is a Sylvester matrix. Stability analysis of the
proposed nonlinear difference equation has not been carried out in general and is a subject
of future research.

There are other approaches [23] and [24] to stabilization, simultaneous stabilization of
linear time-varying systems in the literature. For example, [23] deals with continuous-time
systems wherein the input—output time-varying plant is modeled as an operator between
two suitable function spaces. Among the results, it is shown that if an r-tuple of linear
time-varying plants is internally stabilizable individually, then the r-tuple is simultaneously
stabilizable by a stable linear time-varying compensator. The main difference between
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this paper and the approach presented in [23] is now described. In this paper, we deal
with linear time-varying systems in discrete time. Moreover, the time-varying sysiem is
described as a parametric variation on the space of time-invariant systems. Thus, this paper
addresses problems in system design that pertain to real time adaptation of the compensator
parameters as a result of real time changes in the plant parameters. The main system
design problem that we consider is coefficient assignment, wherein no assumption is made
about the parameters of the plants and compensators for all future times. In particular, the
parameters of the plants and compensators are not assumed to be known completely. In
fact, in this paper we assume that the future values of the plant parameters are unknown,
Of course, to implement the coefficient assignment algorithms presented, we need to know
the values of the plant parameters for an a priori fixed span of time (depending upon the
lags of the systems) in the future. This adds a new twist to the problem of compensator
design for a time-varying plant. Estimating the parameters of a time-varying plant in the
immediate future appears to be an integral part of compensating a time-varying system, in
discrete time, and to the best of our knowledge has never been considered before in the
literature.

2. Representations of time-varying input—output maps. In this section, we consider
a linear time-varying input—output map and study the problem of realizing the map as an
impulse response of a linear time-varying autoregressive moving average (LTV ARMA)
model of finite lag q. LTV ARMA models are of interest because the plants and compen-
sators considered in subsequent sections of this paper are modeled as LTV ARMA systems,
i.e., as ARMA systems with time-varying parameters.

Linear time-varying input—output maps are described by their impulse response se-
quence. We derive condition on the impulse response parameters so that it is realizable as
an impulse response of an LTV ARMA system of a given lag q. To derive the realizability
condition and also in later sections to describe the compensator that assigns coefficients of
the closed-loop system, we find it convenient to introduce the notion of transfer function
for an LTV input—output map. Such a transfer function is an obvious generalization of the
z-transform methods well known in linear time-invariant discrete-time system design. To
describe the transfer function, we need to introduce an operational algebra on the space of
infinite power series with time-varying coefficients. Establishing connection between LTV
input—output system, LTV ARMA system, and LTV transfer functions form the core of the
main results described in this section.

Consider a m-input p-output LTV input—output map described by its impulse response
sequence H (i), where H;(i) is a p x m matrix defined to be the output at time j corre-
sponding to a unit impulse at time j — 7. To impose causality, we set H;(¢) = 0, the zero
matrix, for all z > 7.

Using linearity, it is clear that the impulse response sequence H;(7) completely specifies

the input—output map. In fact, if u;,u;_,,... is a sequence of m vector inputs at time
4,7 —1,..., respectively, we have

T
@b v =y H(0u o,

£=0

where y; is the p-vector output at the time instant j. Equation (2.1) will be referred to as
the LTV input-output map. The realization problem that we now consider is described as
follows.
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PROBLEM 2.1. Given a time-varying ARMA mode! of finite lag ¢ described by

¢ ‘
(2.2) Yi + ZDk(i)yk—z = Z Niliyup_s.

=1 1=(}

where D (7). = 1,2...., € are px p matrices and Ny (),1 =0, 1..... ¢ are p xm matrices.
When is it true that the impulse response of a LTV input—output map described by (2.1)
coincides with the impulse response of an ARMA model of type (2.2)?

We will see subsequently in this section that a necessary and sufficient condition for the
above realization 1s given by a sequence of recursive conditions on the impulse response
sequence HJ’ The procedure is in principal similar to checking ranks of Hankel matrices
in the theory of linear time-invariant systems.

Before we proceed to study Problem 2.1, we introduce an operational algebra and
consider the notion of a transfer function for LTV input-output systems and LTV ARMA
systems. This is done as follows.

Let yi be a discrete-time vector sequence. Define a shift operator 27* as follows:

(2.3) 27 Yk = Yrose

In the notation of (2.3), extending the operator 27% linearly, we can write (2.1) as

2.4) Y = lz H,c(e)z-'-’} uk
=0

The infinite power series
(2.5) H(z™") =Y Hi()z™

is defined to be the transfer function of the LTV input—output map described by (2.1). We
now define an operation of multiplication of two infinite power series of the type (2.5).
Denote the multiplication operation by o.

Let

(2.6) Tz = Z Je(6)z"
£=0

be another infinite power series. We define

(2.7) H(z! Z Z [(Hy (€ o (Ji{b)2 5],
€ =01l=

where

(2.8) (He(6)=7") o (Jilf2)278) = Hi(€)) Jpms, (£2)2~ 0700,

Of course, we assume that H,(€). J,(¢) are matrices of compatible dimension so that
the product Hy(€;)Jy—¢, (€2) is defined. The following straightforward properties of the
multiplication operation are now stated without proof

PROPOSITION 2.2. Let H(z=="). J(z7"), L(z™") be a set of three infinite power series.
Assuming that H{z" Yo J(z7") and J{(z") o L(z™") are defined, we have the following:
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1. The multiplication operation ¢ is associative, i.e.,
H(z") o J(z"o Lz ) = H(zT Y o [T(z7") o L1271,
2. The multiplication operation is not commulative, l.e.,
H(z)oJ(z"") £ T(z"") o H(z™")

in general, even when the right-hand side is defined.

3. Mz o T (= yk = M=) [T (27 ul.

We now consider the following definition.

DEFINITION 2.3 (existence of inverse). Let Q(z™') be an infinite power series with
square coefficient matrices of size a x . If there exists W(z™"), an infinite power series
with square coefficient matrices of size a x a such that

Q=" e W(zT) =W(z") 0 Q(z7) = L,

where I, is an identity matrix of size & x a, then W(z~") is called an inverse of Q(z™")
and we write

Wi =97 (7).

Not all infinite power series would have an inverse. The following proposition is important,
but involves straightforward checking. Hence, the proof is omitted.
PROPOSITION 2.4. Let

£
D)=L+ Dili)z™",
i=1

where Dy (i)-s are p x p matrices. Then D(z~") has an unique inverse given by

DY) = A(0) + Ae(1)z™ + Ax(2)272 4 -,

where
A 0) =1,
Ak(1) = —=Ax(0)Di(1)
Ar(2) = —Ar(1) Dy (1) — Ak(0) Dy (2), etc.

The LTV ARMA model (2.2) can be written as

£ 4
(2.9) [1 +3 Dk(i)z‘z} Yk = [Z Nk(i)z"} Uk
=1 1=0

Using Proposition 2.4, we can now write

¢ ~trog
(2.10) we= T+ Dk(i)z"l} [Z Nk(i)z“z} uk
= =0
(2.11) = ¥(z" uy.

The power series ¥(z ") is defined to be the transfer function of an LTV ARMA model of
lag ¢. We would now define the left and right representations of LTV systems as follows.
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DEFINITION 2.5. The transfer function (2.5) of the input—output map (2.1) is said to
have a left factorization

’ = ¢
(2.12) U, (27l = (1+ZDA.(1')Z—’> o (Z Nk(j)z”)
1= =0

of lag £ if

(2.13) (Z Hk(i)z“") =T (27"
1=0

and a right factorization

¢ -1

4
(2.14) Vr(z") = [ Y N(i)2™ o<I+ZDk(i>z">
=1

=0

of lag £, if

(2.15) (i Hk(i)z‘i) =Ugr(z7").

1=0

It is clear from (2.9) and (2.10) that Problem 2.1 involves finding conditions under which
the transfer function (2.5) admits a left factorization of lag ¢. The following theorem
completely solves the problem.

THEOREM 2.6. The infinite power series (2.5) admits a left factorization of lag € if and

only if there exists p x p matrices Dy(1),..., Dy(£) such that
T T T T Dy()T
Hk (£+1) Hk——l(g) Hk—l(e‘ IDRNEES Hk-—E(l) Dk(Z)T
216) |H{€+2)| L |HL_(e+1)  H{,(6) - H,(2) ‘
' Dy(6)7

The infinite power series (2.5) admits a right factorization of lag ¢ if and only if there
exist p x p matrices Di(1),..., Dy(€) such that

(BT (6 + VHT, (€+2) -]
HE()  HE(E+)
» HT(¢ -1y  HI (6
@D L pr, DT, )DL @) | e

HT()  HL,(2)

Proof. We prove Theorem 2.6 for the case of left factorizations. The case of right
factorizations is similar and is omitted.

The impulse response matrix (2.1) admits a left factorization of lag £ if and only if
there exists Dy (7). Ny (i) such that (2.13) is satisfied. It follows that

[4 ac ¢
(2.18) {(1 +y Dk(i)z”l) o (}: Hk(i)z‘l)} (Z Nk(i)z‘z> .
1=l 1=0 1220
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Expanding both sides of (2.18) and equating like powers of z~! yields the desired
result. g

Remark 2.7. For linear time-invariant systems, the notion of left and right factorization
is well known [25]. For time-varying systems, these were introduced in [14] and [17]. The
realizability condition introduced in Theorem 2.6 is new. Note that if the impulse response
sequence is arranged in the form of a matrix

Hy(0) Hi(l) Ha(2) H3(3) Hi(4)

L0 H{(0) Ha(l) Ha(2) Ha(3)

(2.19) .. 0 O H(0) Hi(1) Hy(2)
0 o O Hy(0) Hi(l)

0 0] 9] O H(0)

the conditions for left (right) factorization can be viewed as a rank condition on the columns
(rows) of the above matrix. In time-invariant system theory the above rank condition would
reduce to checking ranks of a suitable Hankel matrix. The resuits are quite standard {26],
and, therefore, the details are omitied. _

Remark 2.8. It may be noted that, unlike the results in [14] and [17], wherein left and
right representations for input-output maps of the form (2.1) have also been given, we do
not have to construct state-space realizations of minimal order for (2.1) as an intermediary
step.

The following two examples serve to illustrate the important fact that, unlike the time-
invariant case, the existence of a left factorization of finite lag for a time-varying system
does not imply the existence of a right factorization of finite lag and vice-versa. Both
examples are for single-input single-output systems.

Example 2.9. Consider an input-output system defined by the following impulse re-
sponse sequence

(2.20) He(0)=1 k=0,1,2,....
Fori=1,23,...

H,...(t)=1for k > 0,keven
= Qfor k > 0, kodd.

Let H;(i) = 0 for all other values of i.j. It is easy to see that (2.20) admits a left
factorization of the form (2.12) of lag 1 given by N (0} = 1, Ni(1) =0, Di(1) = —1. On
the other hand, (2.20) does not admit a right factorization of finite lag.

Example 2.10. Consider an input-output system defined by the following impulse re-
sponse sequence:

(2.21) H0)=1 k=0.1.2,....
For j =1.2....

(2.22) Hi(j) =1k > 0. keven
(2.23) = 0k > 0.k odd.

Let H;(i) = 0 for all other values of z.j. Itis straightforward to check that (2.21) admits
no left factorization, but admits a right factorization of lag ! given by

(1+ Ne(Dz= (1 =27
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where
Ni(l)y = =1+ Hi{1).

Remark 2.11. Left factorizations of finite lag always admit ARMA representations of
finite lag as well as state-space realizations of finite order [14], [27].

Example 2.10 raises the concern that right factorizations, unlike left factorizations, may
be difficult to implement. For this reason, we will conclude this section by showing that a
right factorization

—1

é ¢
(2.24) NoD = [N Ne()z™" | o [T+ Di(i)z™"
=1

iz=()

of finite lag (i) generically admits a left factorization of finite lag and (ii) can always be
realized in state space form.

We now consider the following topology for the space of right factorization of lag < ¢.
Note that the vector of matrices

(Nk(0),..., Ni(€), Di(1), ..., Di(€)) € BN,
where
N = fp* + (£ + )pm

foreach k = 0,1,2,.... Thus, every right factorization of the form (2.24) is a point in the
product space

(2.25) [[z" =7

We now equip P with the product topology (see [28]).

DEFINITION 2.12. A set G of right factorizations is said to be generic if G can be written
as an intersection of a countable number of open and dense sets in P.

The ARMA realization of a system of the form (2.24) is given by the following theorem.

THEOREM 2.13. Consider a generic element in the space of right factorizations of lag <
¢ with m inputs and p outputs. There always exists a left factorization of lag ¢, where £ is
the smallest integer satisfying €p > fm such that the two factorizations correspond to the
same infinite power series for all k > .

Proof. See Appendix 1.

Note 2.14. The basic interpretation of Theoremn 2.13 is that almost all LTV transfer
functions with a right factorization also have a left factorization and, therefore, can be
realized as an LTV ARMA system. Of course, we could also define a generic set of
left factorizations to show that generically a transfer function has left factorization (right
factorization) if it has a right factorization (respectively, left factorization).

We will now state that right factorizations of finite lag (2.24) can always be realized
in state-space form. This realization has not been used subsequently in this paper. It is
stated only to satisfy our curiosity that even though a right factorization may not have a left
factorization, it can still be realized as a state-space system, but possibly not as an ARMA
system. The result follows with modifications from [14] and [16].
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THEOREM 2.15 (state-space realization). The right factorization given by (2.24) can
always be realized as an tmth-order state-space system
ok + 1) = F(k)z(k) + G{k)yu(k); 2(0) =0
y(k) = H(k)z(k) + J(kjulk),

where
[0 0 0 0 =D ]
I O O O -Dialf-1)
o 1 O O —Di_a(t-2)
(2.26) F(k) = :
o 0 1 0 —Dy_42(2)
L O O O I  —=Di-pi(l)
227 G=col[1,0,0,...,0],
(2.28) Hk) = [Wi(1), We(2), ..., Wa(£ = 1), Wi(O)],
and
(2.29) J(k)y = Wi(0),

where Wi.(1) is the coefficient of 2~ in the formal power series expansion of (2.24).

Proof. We refer the interested reader to {14] and [16].

The main contributions of this section are now summarized. Starting from the impulse
response sequence of an input—output map, we introduce a formal infinite power series. We
then completely answer the question as to when such a power series can be represented
as a left (right) factorization. Existence of a left factorization enables us to construct
an LTV ARMA system that realizes the impulse response sequence. Right factorization,
on the other hand, can be realized as a state-space system. This fact is of independent
interest, but is not used subsequently in this paper. Finally, we show that the existence of
left (right) factorization in general does not imply the existence of respectively right (left)
factorization, although, for a generic transfer function, that is indeed the case. This fact
should be contrasted with linear time-invariant transfer functions, wherein existence of one
implies the existence of the other.

3. A nonrecursive compensator design technique for simultaneous coefficient as-
signment. In this section, we shall consider Problem 1.4 regarding simultaneous coefficient
assignment of an r-tuple of m input p output LTV ARMA systems by a single LTV ARMA
compensator. We also show that the coefficient assignment problem can be used to analyze
Problem 1.3 as well.

To introduce the problem, let us consider the 7-tuple of plants defined in (1.1). Assume
that the transfer function of the jth plant is given by

(3.1) Giz"y =D (WA (z7"),

where

(32) ‘ =1
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+ .
J
Ul-——b- G ‘>y]
" *
u y +
i C e
+

Fic. 3.1. A mwo-input two-outpur configuration of the closed-loop svstem.

7 = 1,2,...,r. Furthermore, consider a compensator with transfer function
(3.3) ClzhYy =N(E""D 'z,
where

(34) ¢ !

It may be noted that the compensator (3.3) may not have a left representation, and therefore,
may not have an LTV ARMA realization unless it satisfies the generic conditions of Theorem
2.13. Assume that the plants and the compensator are put in the configuration given by
Fig. 3.1.

The following is the transfer function of the closed-loop system with respect to the jth
plant.

[yl,k] _ [(@O(DJOﬁ+NJ oN)ToN?) (~I+Do(D? oD+ N oN)! oD

Y2k (No(D? oD+ N o Ny~ o N7 (No(D? oD+ NI oN)~! o D)
Uk .
a1 Jj =1.2,....1.

(3.5
Note that in (3.5), D.N.D?, N7 stands for D(z~") . N(z7'). D?(z7"), N7(z~") defined
in (3.2) and (3.4). Whenever convenient, in the future we will suppress =1 We now
consider the following simultaneous coefficient assignment problem.

PROBLEM 3.1 (coefficient assignment problem). Given an r-tuple of plants described
by (3.1), find a compensator of the type (3.3) such that

{+q
(3.6) DoD+N oN =T+ 5(i):

1=

for a prespecified set of coefficients A (7). 7 = 1..... o= l..... [+q.

For time-invariant systems, the quantity in the left-hand side of (3.6) is the return dif-
ference, determinant of which is the closed-loop characteristic polynomial. Thus. Problem
3.1 is the analogue of the pole placement problem for time-invariant systems.
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It is not a priori clear how the coefficients A7 (1) are related to the input-output response
of the closed-loop system (3.5). In particular, we might ask the following question: If a
plant is coefficient assignable by some choice of a compensator, is the closed loop-system
stable in the bounded input bounded output sense? For a time-invariant system. the answer
to this question is always affirmative. For a time-varying system, the BIBO stability is
not necessarily guaranteed. To ascertain the BIBO stability of the closed-loop system, the
compensator coefficients have to be uniformly bounded. To examine this question, let us
consider the transfer function between y,  and uy  for the jth plant given by

3.7) y;»k:[I—)O(Djoﬁﬁ—NjO./\.f)"o./\/’j]ul.k.
which may be written as a cascade of two interconnected subsystems given by

(3.8) Yin = ﬁu?.m

(3.9) [D? o D+ N7 o Nut o = Nuyx.

Clearly, (3.7) is BIBO stable if each of the two subsystems (3.8) and (3.9) are BIBO stable.
If we assume that the coefficients of the plants D7.(i) and Ny (i) are bounded uniformly
in k, then an important question to ask is whether or not Problem 3.1 can be solved by a
compensator with coefficients Di(1). Nk (i), bounded uniformly in k. We therefore consider
the following problem.

PROBLEM 3.2 (bounded coefficient assignment problem). Given an r-tuple of plants
described by (3.1), find a compensator with coefficients Dy (i), Ni(4) uniformly bounded
in time k such that (3.6) is satisfied for a prespecified set of coefficients AT (7).

Note that if N7 is uniformly bounded, then for an appropriate choice of A{C(i), the
input—output system (3.9) can be made BIBO stable provided that the coefficients A{c(i) are
assignable. This fact follows easily from Desoer [10] and has been subsequently studied
in detail by Bouthellier [27]. The basic idea is to choose Al (7) such that they are slowly
varying in between any two consecutive times. Following [10) and [27)], we could construct
a chain of open neighborhood €2 in the space of coefficients such that for all k, we have

(AL(1).AL(2),.... DL +q)) € Q.

For the above choice of coefficients, Problem 3.2 would guarantee simultaneous BIBO
stabilizability of the r-tuple of plants. The main result of this section is described below.
THEOREM 3.3. A generic r-tuple of p x m plant is coefficient assignable if and only if

(3.10) p+m>rTp.

Furthermore, if (3.10) is satisfied, then the r-tuple is coefficient assignable by a compensator
of lag q where q is the smallest integer satisfying

3.1 glm +p—rp] > rpt —m,

where £ is the lag of each of the T plants.

To get an idea as to how tight the bounds (3.10) and (3.11) are, we consider the
following theorem.

THEOREM 3.4. A generic r-tuple of p x m plants can be assigned with bounded coef-
ficients uniformly for all k and for all plants in the generic set by some choice of feedback
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compensator (where the compensator can depend on the choice of the r-tuple of plants) if

and only if (3.10) is satisfied.

Thus, for a generic set of r-tuple of plants, if (3.10) is not satisfied, then not only is
it not possible to assign coefficients simultaneously, but it is also not possible to restrict
the coefficients to a bounded set uniformly in & for all plants in a generic set. We now

consider the proofs of Theorems 3.3 and 3.4.

Proof of Theorem 3.3. Consider the r-tuple of plants (3.1) together with the compen-
sator (3.3). In the notation described by (3.2), (3.4) we can equate the like powers of Pk
in (3.6) to obtain the following linear equations:

(3.12) My, = Al
where
(3.13) v = col [I, Dxyi(1), Dks2(2), - .., Diro(q), Ne(0), Ney (1), . ..
(3.14) Al = col [AL, (1), 8],,(2), . AL, 6+ )],
M] =
I Di-H“) I 0O NZH(])
D}.,(2) Di,(1) Ni42(2)
: D}5(2) O :
I ,
Di+l(€) o Di+q+x(l) NgH(f)
% D{C'HZ-H ([) Di+q+2(2) 0
0 0 :
O : o .
L © o Dl O
(3.15)
for j = 1,2,....r. If we now define the matrix
(3.16) My = col (M}, M}, ... M])

and the matrix

(3.17)

Ay = col (AL.AL.....

we can combine the r linear equations (3.12) as

(3.18)

Afkl/k = Ak.

O
N} 42(1)
N 5(2)
Neen(0)
0
)

B Nk+q(Q)]*

Nli+q+l(])

le+q+2(2)

Nz+q+£(é)

It is easy to check that My is a rp(€ + q) x (¢ + 1){m + p) matrix, vy isa (g+ 1) x
(m <+ p} x p matrix, and A is a rp(€£ + ¢) x p matrix. It follows that given A, and A,
we can solve (3.18) for a suitable vy if and only if

(3.19)

rp(é+q) < (g+ 1){(m +p) —p.



A NEW APPROACH FOR COMPENSATOR DESIGN 1451

and Al is of full column rank for each k. The inequality (3.19) follows from the require-
ment that (3.18) is solvable if and only if the matrix M, after deleting the first p columns
has more columns than rows. Note that the inequality (3.19) is the same as the inequality
(3.11). The proof of this theorem is now complete by noting that generically the rows of
M} obtained from M by deleting the first p columns are all independent. The proof of
this last staternent is technical, and we refer to [27] for details. The basic idea is to choose
a minor for M with nonidentically vanishing determinant. g

Proof of Theorem 3.4. The sufficiency part of Theorem 3.2 follows from Theorem 3.1.
We now have to prove the necessity part.

Let A be a variable that takes on values 1, 2, 3, .... Assume that the r-tuple of
plants (3.1) is generically coefficient assignable by the compensator (3.3) and assume that
the coefficients A7 (z) are all bounded with respect to some matrix norm; i.e., there exists
M > 0 such that

(3.20) ALl =M

foralj=1,...,mi=12,....l+gand k = 0,1,.... Let P be the space of r-tuples
of plants equipped with the product topology similar to that described in (2.25). We now
describe a map ¥, for each A given by

(321) ‘I’,\Z/PTM'PT
described as
DY (i) — AT Dy (3),
Nﬁ(i) —r /\‘iN,z(i).

It follows that ¥, maps a generic set of r-tuples of plants to a generic set of r-tuples of
plants. For each A\ we now define the compensator

Ca(z"") = Ma(z""D5'(z71),
where
q
Da(z™) =T+ A7Deli)z™,
(3.22) g !
Na(z™"y =D A" Ni(i)2™

1=0

Thus. we conclude that for each A, there exists an open and dense set S, such that every
r-tuple of plants in S can be assigned with coefficients A7(), by a compensator of type
(3.22), such that

(3.23) INALG) < M
fori=1,2,....£+ q. Define
(3.24) U=0ni_5.

Thus, for every r-tuple of plants in U, there is a sequence of compensators such that the
corresponding closed-loop system has coefficients in an arbitrary small neighborhood of 0.
However, the map from the space of compensators to the space of coefficients is a linear
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map described by (3.18). It follows that the image of this linear map is closed. Hence, for
every 7-tuple of plants in U, there exists a compensator that places the coefficients A7 (i)
at 0. In other words. we can solve the system of equation

(3.25) My = 0.

The proof of Theorem 3.4 is now completed by showing that there exist open sets of
r-tuples of plants for which (3.25) is not satisfied if 7p > p + m. This is done as follows.
Define

*

(3.26) D3 (i) = col [Ii (2). DJu) ..... D’(z)}

J .

N7 (i) = col |
We now make specific choices of D7 (z). N7 (i) as follows. As m + p < rp, which implies
rpf > m, we set

(i) the rpf x m matrix
3.27) col [NZ (1), NI »(2)..... Ni (O] = e e, ... enl,

where ¢; is the ith standard basis vector in E™P i = 1,...,m;
(i1) the first column of the matrix

col [=Dj (1), =D;2(2). ..., =Dj_ ,(6)]

to be ey, where e, is the m+ 1st standard basis vector in E7P¢. and
(iii) the rp x (p + m)

(3.28) [Disea; (0 Ny, (O] = [e1 €20 emap),

where €; is the ith standard basis vector in E'? i =1,....m+pforj=1,....q.

For the above choice of r-tuple of plants, it can be shown that (3.25) cannot be solved
(see [27] for details). Furthermore, in any neighborhood of the coefficient space of the
above r-tuple of plants, (3.25) has no solution. This concludes the proof. a

Remark. The proof of Theorem 3.4 is an adaptation of a technique due originally to
Anderson and Bymes [29].

Remark 3.5. We now state and prove a result that addresses Problem 3.2.

THEOREM 3.6. A bounded set S of r-tuple of p x m plants is coefficient assignable
simultaneously by a compensator with bounded coefficients if (3.10) is satisfied and if

(3.29) det (M MT] > €

for some € > 0, which is independent of k, and for all r-tuples of plants in S.

Note that as a result of condition (3.29), S fails to be a generic set. The proof of
Theorem 3.6 follows from the following simple and well-known proposition.

PROPOSITION 3.7. Ler = be an m vector and A be an m by n matrix of rank m. The
n vector T such that Az = = and xT x is minimum is given by

(3.30) x=AT(A44T)"

For a proof of the above proposition see Brockett [30, p. 127].
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Proof of Theorem 3.6. Our basic problem is to solve (3.18) for a uniformly bounded
vi.. Clearly, in view of Proposition 3.7, the solution

(3.31) vi = MEALME) T A

has the property that the columns of v} have minimum norm. Since the r-tuple of plants
and the coefficients Ay are all bounded uniformly in k, it follows that under the assumption
(3.29), v{ is uniformly bounded as well. g

To conclude this section, we reiterate the three important questions that we address in
this section.

(a) For a generic set of r-tuple of p x m plants, when is it possible to coefficient assign
simultaneously?

(b) For a generic set of r-tuple of p x m plants, when is it possible to assign a bounded
set of coefficients simultaneously?

(¢) For a set of r-tuple of p x m plants, when is it possible to assign coefficients
simultaneously by a compensator with coefficients bounded uniformly in k?

4. A recursive formulation of the coefficient assignment problem. We begin this
section with the remark that, so far in this paper, Problem 1.4 has not been considered.
Instead, in § 3, the closed-loop system was decomposed into ARMA and moving aver-
age subsystems. The design problem considered has been to assign the coefficients of the
ARMA subsystem while maintaining an uniform bound on the coefficients of the compen-
sators. Such a design problem leads to a simplified algorithm. To implement the algorithm,
we need to solve linear equations.

We now consider Problem 1.4 for a single plant. The case for an r-tuple of plants is
analogous and is not described in detail. Assume that the plants and the compensator are put
in the configuration given by Fig. 3.1. For simplicity, we only consider the transfer function
between y; and u;. However, unlike that in § 3, we will not decompose the transfer function
(3.7) into a cascade of two transfer functions (3.8), (3.9). We will see shortly in this section
that this introduces new problems, namely, the compensator parameters are not obtained
by solving static linear equations one for each time. In general, Problem 1.4 reduces to
a nonlinear discrete iteration on the parameter space of compensators. The algorithm,
although more complicated, iteratively solves this coefficient assignment problem.

Consider the transfer function (3.7) for a single plant (i.e., assume j = 1). Define

q
@.1 X(z7") =) X))z
r =0
£+q
(4.2) AT = Agli)z™
=0
such that
(4.3) Do(DoD+NoN)'=4a""oX.

The transfer function (3.7) can be written as
(4.4) ALz Nye = X(z7 ) o N (=7

PROBLEM 4.1 (the coefficient assignment problem). Given N(z""yand D(z7"), find, if
possible, an N'(z~'). D(z7") such that Ay (¢).i = 1... .. ¢+q can be assigned a prespecified
set of coefficients.
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Problem 4.1 can be stated equivalently by rewriting (4.3) as
(4.5) Xo(DoD+NoN)=AocD

To solve (4.5) we equate like powers of 27!, ¢ = 0.1.... £ + 2q for all £ > 4 and solve
for D and V. This will be accomplished by considering two sets of equations.

(A) The set of equations derived by equating like powers of z ™' i = €+¢q,..., £+ 2q
in (4.5), and

(B) The set of equations derived by equating like powers of z7',i =0,... £+ ¢ — 1
in (4.5).

Using the above two sets of equations, we derive an iterative scheme that will allow

us to solve (4.5). From the set of equations (A) as described above, we get the matrix
equation

(46) Sk(pk = w/ﬁ

where Sy is a (g + 1)p x (¢ + 1)p matrix defined by

CZ—;—Hq-l(z + Q) CI\~T+£+q—-2(€ +q-1) C{+i+q—-3(£ +q- 2) T CE-&—E(K + ]) CkTH_;(f)
0 <g+e+q_z(5 + Q) C[+l+q—3(£ +q- 1) e CZ;Z([ + 2) <Z+E—I(£ + 1)
0 0 Grergrlb+a) o L6+3) (L, (+2)
0 0 0 0 Clz;((g*‘Q) <Z+£—|([+Q‘ 1)
0 0 0 0 0 (,CTH_](K +q)
4.7)
and where we define
~ _ f+q '
(4.8) DioDk+ NioNe =D Gli)z™.
1=0

Moreover, ¢, and ¥ are defined as follows. Note that ¢ is a (¢ + 1)p x p matrix given
by

(49) @ = col [Xlz+£+q_|(0)~X{+e+q—|(l)~, . 'VXZ+€+q—l(q - 1)»Xg+£+q—l(Q)]

and 1y, is a (¢ + 1)p x p matrix given by

q
ve=col | Dl i (g DALy i€+ 7),

Disgeymimtl@ = DA s peq (45 +4). DI (AT g i€+ q)

(4.10)
Similarly, from the set of equations (B) we obtain

(4.10) My = 0,
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where vy is defined as follows:
vy = col {Dk(o)- Dy (1), .. Dk+q(Q)§l\_"k(0)~ Nega(1). .. ~Nk+q(<])]~

The matrix My is a (€ + ¢)p x {g+ 1){p + m} matrix that can be shown to be a function
of r,. A, and the plant parameters. If we assume that

(g+ 1ym > p(f - 1).

it follows that (4.11) can be solved for a nonzero solution.

Using (4.6) and (4.11). we are now in a position to solve (4.5), and hence, the coefficient
assignment problem, in an iterative fashion. However, before we consider the following
coefficient assignment algorithm, for the sake of clarity, we will provide an overview
of the basic idea. First, we will initialize the algorithm by choosing suitable (timewise)
values of the plant, compensator, and parameters to be assigned (i.e., the A;(2)). Having
obtained these values, we are then able to solve for the next set (timewise) of compensator
parameters vy, via (4.11). These values of v are then used in (4.6) to solve for the next set
of X (i)i = 0....,q. These values of X are then substituted into (4.11) to solve for vi41,
which is used in tumn to solve for X, etc. ... It will be assumed that in the following
coefficient assignment algorithm (4.6) and (4.11) admit solutions for all times k and that
det D(0) # O for all k so that D~ always exists.

The coefficient assignment algorithm
Step 1 (initialize the algorithm). Choose values for
(iy Dj(i),N;(1)i =0,...,q,5 <i—1
(i) D;(1).N;(1)i =0,... =1, <qg+i-li=£(j<{l+g—1
(i) A;(1)i=0,1,... 4-1,j<qg+ii=¢...6+qj<l+qg-1
Step 1. Solve (4.6) for X;(i)i =0,...,¢,j=0,1,...,£+¢g—1and
Step 111. Using the values of X (i) computed in Step Il compute vy using (4.11).
Step IV. Set k =0
Step V. Obtain an estimate of the future values of the plant parameters
(l) Dk+q+,‘+](i), Nk+q+i+l (Z),Z = 07 1, ey ¢~ 1 and Dk+q+g(£), Nk+q+g(g) and
choose values for
2) Ak+q+i+1(i)i = O, I,... ,€ — 1 and Ak+q+g(i)i = g, A ,g +4q
Step V1. Solve (4.6) for Xpyr4q{i)i =0,...,q
Step VII. Solve (4.11) for vy
Step VIIL. Set k = k + | and return to Step V.

Remark 4.2. The values required in Step I could be based on the available knowledge
of the plant parameters Dy (i), Nx(i)i = 0,....¢ at time k = 0 and the values of Ag(i)i =
0.1..... ¢ + g, which have been specified. It should also be noted that the lag g of the
compensator computed via the above algorithm is the smallest nonnegative integer, which
satisfies ¢ > [p(£ —~ 1} — m]/m.

Remark 4.3. 1t can be shown that, using techniques similar to those of §3, that the
above algorithm can be extended to simultaneously coefficient assign an r-tuple of p x m
systems, where r < m/p + 1. We will not elaborate on this further and refer the interested
reader to [31].

We now consider two illustrative examples of the above coefficient assignment algo-
rithm.

Example 4.4. Consider the closed-loop system given by Fig. 1.1 (assume j = 1) where
the plant G is given by

Yk + Qalk—1 = brtp + Crtp—
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and the compensator C is given by the gain feedback

» _ g-1
Up = Qp Y-

Writing the plant as
Yr = (d;‘ o Nk UK.

where

dk(z") =1+4+agz" ;nk(z") = by + ez,

we obtain by Theorem 3.3 the equation of the closed-loop system as follows:

(4.12) (ldx o dx + i) o di yx = nruy.
Writing
4.13) (dkOd_k‘}-le)OCZ;[Zf;IO(]"f'ekZ'l),

(4.12) reduces to
Yk + eyt = frbrug + frckup_y.
From (4.13) it follows that
fro(diody +ni) = (1 +exz”")ods,

i.e., equating like powers of 2~

(4.14) frldy + b)) =dx Yk >0
and
(4.15) felawdi_y + ) = exdi—y Yk > 1.

Eliminating Jk in (4.14) and (4.15), we obtain

b
(4.16) fesr = Jibrery vk >0
Cra1 — frlChs1 — Qrtrbi]
and
(4.17) g = % e s
I~ fk

Given the plants parameters ax. bi, and ¢y, and given ey, the coefficient of the closed-loop
system to be assigned, (4.16) describes a nonlinear recursion in fi. Equation (4.17), on the
other hand, is a nonlinear function that computes the feedback gain in real time.

Among several queations that we might ask about (4.16) and (4.17), an important
one in terms of understanding the properties of the coefficient assignment algorithm is the
following.

Question 4.5. 1f ay. by ¢, and e, are time invariant and given, respectively, by a, b. ¢,
and e, what is the asymptotic behavior of (4.16) and (4.17)?
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Defining a = be..3 = c. and v = —[c — abj, we obtain the following recursion from
(4.16):
o fi
(4.18 = .
) S+ R

Note that (4.18) has two stationary points 0 and (o — 3)/~. It is easy to show that the
second stationary point corresponds to the time-invariant solution: i.e., the corresponding
value of the gain d equals the value of the gain, which assigns the parameter ¢ in the
closed-loop system if a..b..c.. and e. were time invariant and known. The stationary point
0. on the other hand, corresponds to an infinite gain.

To examine the trajectory of fr as defined by (4.18), we write

9k
4. L= =
(4.19) fr "
Substituting (4.19) into (4.18) yields

Gr+1 - gk
hist  Ohe + 79k

[ Gesr | _ | o 0 [ 9k
hk+l Y 3 hy |-
With an initial (nonzero) estimate f of the true value of f(=(a — 3)/v) we may write
. . - 0
[ }i: } = —foa* { aq/ﬁ } +[(5—a)+7f0]5k[ X }

Therefore, if |a| > |3| (i.e., be] > |c)

which may be rewritten as

. . Gk a—f3
1 = lim =~ = .
fim fi = Jim 3% = —

On the other hand, if |a| < |3,
fm s =0

We may summarize the above results as follows: for choices of a,b,c, and e for which
lbe| < |c|, the adaptive gain d. tends toward 0, the infinite gain. For choices of a,b,¢, and
e for which |be| > |c|, the adaptive gain converges to the unique time-invariant solution.

Remark 4.6. Example 4.4 illustrates that under suitable conditions on the coefficients
of a time-invariant plant, the coefficient assignment algorithm may be viewed as a globally
convergent adaptive controller. It may also be noted that when o = 3 = 1 or when a =
B = —1,fx| converges to O as k tends to infinity. On the other hand, when a = =3 =1, fi
is periodic of period 2.

Example 4.7. Consider the closed-loop system defined by Fig. 1.1 (assume j = 1),
where the plant G is given by

(4.20) Yk + di(Dye—r + di(2)ye—2 = n( Dy + ni(2)up-2
and the compensator C is given by

(4.21) up + de(Dug_y = A(0)yx + ik Dyr—1.
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Define X, (z~"') given by (4.1)~(4.3) as follows:
Xk(z—') =1+ X z7h

It can be shown that by writing the parameters of the compensator (4.21) in terms of the
plant parameters and the A;(7) it is possible to derive the following recursive equation for
in

F(Xpq3, Xigo2 Xiesr)

4.22 Xiews = .
422 B 9 (Kkras etz Xxat)

where

F(Xke3e Xir2: Xiew1) = oD Xigs + 00(2) Xiw2 + 05 (3) Xt + 61(4) X3 Xis2
+0k(5) Xiw2 X1 + 01(6) X w3 Xup2 Xiey1 + 01 (7)

and

9( Xig3, Xis2, Xg1) = G (B) Xiws + 06 (9) X2 + 01 (10) X iy + dr (1) X 13 X k2
+or(12) X3 Xpq) + G (13) X2 Xt + 06 (1) X3 X kg2 X1 + &1 (15).

In the above equation, ¢ ()i = 1,..., 15 are nonlinear functions of the plant parameters
and the parameters to be assigned at times k + 1,k + 2,k + 3.

A complete analysis of recursions of the type (4.22) is a subject of future research.
We would analyze (4.22) under certain special cases. If we denote Xy by yi/(i, we can
rewrite the recursion (4.22) as follows.

Yk+4 = Ok (D Yk43Ck+2Ck+1 + Ok (2) Cer3¥it28k+1
+&k (3) Cer3Ck+2¥r+1 + Gk (4) Ykt 3Yk+2Ck+1
Bk (5) Ch3Yk+2Yk+1 + Ok (6) Yk+3yk+2¥i+1 + Bk (7) Cr3Ck42Ck+1-
Crva = Ok (8) Yn+3Ck+2Ck+1 + Ok (9) Cer3¥r+2Ck+1 + Dk (10) Cor3Cht2¥i+
+&k (1) Ykt 39k 4+2Ck+1 + Gk (12) e 3Yrr2Yi+
+&k (13) Yre+3Chr2¥k1 + Sk (14) Crr3Chr2Crat + Gk (15) Ykr3Uk+2Yiet1-

If we assume without any loss of generality that y2 + ¢} = 1, we can reparameterize
Yr = €08 Ak, (i = sin 0. Furthermore, if we choose

Orll) = Ox(2) = &k (3) = —1,x(6) = Pr(4) = P& (5) = (7)) = 0,
(4.23) Ok(8) = 9k (9) = Dk (10) = @1 (15) =0,
or(11) = ¢ (12) = 0 (13) = 1,0 (14) = —1,

we have
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c0s Qs = €OS(Ok 43 + Okgr + Orsi ).

sinfgia = sin(Opp3 + Oxs2 + Opp ).
Thus, for the special choices of @i (-) given by (4.23), the recursion (4.22) reduces to
(4.24) Orss = Oprz + O + s

We now claim that (4.24) describes an Anosov flow [32] on T2, the three-dimensional
torus. Consider the system

Q4| 01 0 Gk
(4.25) Bker | =10 0 1 B
Vg 11 Vi

on F*, where oy = 6y, 8y = ), and vy = 6,. It follows that vy = 6;47. Let the 3 x 3
matrix in (4.25) be denoted by A. Since all entries of A are integers, det A = 1 and A is
hyperbolic, it follows that the map induced on T by A is a hyperbolic toral automorphism,
which we denote by L 4. It follows from [32, Thm. 4.8] that periodic points of L4 are
dense in T3, L4 is topologically transitive, and L, has sensitive dependence on initial
conditions. Thus, the hyperbolic toral automorphism is chaotic on all of T2 (see [32, p.
197]). :

What we conclude, therefore, is that for choices of ¢4(-) given by (4.23), the time-
varying coefficient assignment problem is chaotic. Thus, if we use adpative coefficient
assignment as a strategy for compensation, we must carefully avoid chaotic dynamics.

5. Conclusion. In this paper, we have given conditions under which an input—-output
map for a time-varying system admits left and/or right matrix fraction representations. Us-
ing these representations, we have described procedures for the simultaneous coefficient
assignment of a family of time-varying systems using nonrecursive algebraic techniques. It
is important to note that these techniques are generalizations of well-known design method-
ologies in time-invariant system theory [1]-[3] to the time-varying case. When the number
of input and output channels is such that the conditions of the nonrecursive coefficient
assignment scheme is not satisfied, recursive procedures to coefficient assign time-varying
systems are given in the form of a recursive algorithm. These recursive procedures have no
analogues in the time-invariant case, and thus, represent a new design procedure. For cer-
tain special cases, solution of the proposed recursive algorithm is shown to be chaotic. This
fact indicates that further work needs to be done and a complete analysis of the algorithms
given in §4 is a subject of future research.

6. Appendix 1. The purpose of this appendix is to prove Theorem 2.13. Let us con-
sider a right factorization of lag ¢ given by (2.24). Let us also consider a left factorization
of the form (2.12) of lag £. The two representations have the same input—output properties
provided:

—1

¢ ¢ ¢ -!
S N o[ I+ Y D)z = {I+2Dk(i)z“‘} o
1= =1

7=}

6.1y

¢
> Nk(z')z—l}
1=
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or, equivalently,

3

I3 ¢ ¢
[[-{»ZDk(z')z‘z}o > Nz —[ZNk(i)z"} folI+> Dp(z""| =0
1= 1=0

=0 1=}
6.2)
Expanding (6.2) and equating like powers of 27!, we obtain

N (0) = N(0)for k =0,1,2,. ..

and
(6.3) viM;, = ¢rfork=0,1,2,...,
where
uk=[Dk(l),Dk(Z),.,.,Dk(Z),Nk(l),Nk(Z),...,Nk(e)],
¢k=[Nk(O)Dk(l)_Nk(l)’7Nk(0)ﬁk(é)—Nk(E)’Ov70],
M(k) =
[ Nei(0) Neo(D) Nely(2) - Nem(d) 0 O o
O  New(0)  Nios(l) . Mea®) O O
0 0 Ni_(0) e A
-1 =Dii(1) =Dp—1(2) -+ D) O O 0
) -1 —Di_2(1) —Dy_2(€) O
o 0 S A O ~Dieee(D) |
(6.4)

As vy is a p x £(p+m) matrix, ¢ is a p x (£+£)m matrix and M, is a £(p+m) x (£+&)m
matrix; it follows that a sufficient condition for (6.3) to have a solution vy is that My is of
full row rank and £(p +m) > (£ + O)m, i.e., if €p > fm.

It is not too hard to check (see {27] for details) that the condition that A, is not of
full row rank is given by a proper algebraic set in P (in the topology described in §2 (25)).
In fact, for k = £ + 7, the condition that M is not of full row rank is obtained as proper
algebraic set in the restriction of P to

£—~147

H EN
=T

for 7 = 0.1,2,.... Thus, there is a countable intersection of open and dense set in P for
which M is of full row rank for all k > ¢.

Remark. In general, it is not entirely obvious why the associated algebraic sets in P
that makes Al singular is proper. The proof consists of picking a minor of A, with
nonidentically vanishing determinant. The details being technical are relegated to [27].
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