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Pose Estimation Using Line-Based Dynamic Vision
and Inertial Sensors

Henrik RehbinderMember, IEEEand Bijoy K. GhoshFellow, IEEE

Abstract—in this paper, an observer problem from a computer  Foxlin et al. [10], [11] has studied a virtual reality helmet ap-
vision application is studied. Rigid body pose estimation using iner- plication and among the robotics applications we would like to
tial sensors and_ a m_onocular camera is con5|dere_d_and itis shown point out Vaganagt al.[33], Madniet al.[20] and also Barshan
how rotation estimation can be decoupled from position estimation. .

Orientation estimation is formulated as an observer problem with and Durrant-Whyte _[4]' Sakagucht al. [28] and S_mlthet_ al._ )
implicit output where the states evolve onSO(3). A careful ob-  [29] have also considered the problem. Theoretically justified
servability study reveals interesting group theoretic structures tied linear approaches have been studied by Baerveldt and Klang [2]
to the underlying system structure. A locally convergent observer and Balaram [3] while nonlinear approaches have been investi-
where the states evolve oi$O(3) is proposed and numerical esti- gated by Rehbinder and Hu [25]-[27]. The dominating algo-
mates of the domain of attraction is given. Further, itis shown that, = L. .. :
given convergent orientation estimates, position estimation can be rithm among the heu”St'Q studies is the extended Kalman filter
formulated as a linear implicit output problem. From an applica- (EKF). Regardless of which method is used, yaw can never be
tions perspective, it is outlined how delayed low bandwidth visual obtained and position is not considered.

observations and high bandwidth rate gyro measurements canpro-  This paper proposes the use of vision and inertial sensors,
vide high bandwidth estimates. This is consistent with real-time fused with a provably stable observer.

constraints due to the complementary characteristics of the sen-
sors which are fused in a multirate way.

Index Terms—bynamic vision, implicit output, inertial sensors, A. Vision
lie group, observers. Using computer vision as a stand alone sensor for pose esti-
mation is quite a standard task; see, for example, the surveys by
Huang and Netravali [14] and by Olensis [23]. The main body
of research has been devoted to point correspondence based al-
HE fundamental problem of rigid body state estimatiogorithms. An alternative would be a line correspondence based
is that there is no single sensor that measures positialgorithm such as proposed by Spetsakis [31], [32], Dornaika
and orientation (pose) with respect to an inertial frame wittind Garcia [9] and by Christy and Horaud [7], [8]. Line corre-
high bandwidth and long-term stability. The most known wagpondences have the advantage of being more robust than point
of deriving position and orientation is perhaps inertial naviga&orrespondences. The disadvantages are that line tracking al-
tion where rate gyros and accelerometers are integrated. Hoeithms are computationally more intensive and low sampling
bandwidth of such a system is typically good, but long-term stikequency and long time delays can therefore be expected. Fur-
bility cannot be obtained due to integrated errors. This probleitmermore, they are mathematically more complicated. A spe-
is further enhanced for cheap sensors where drifting zero-leeélc field of computer vision, where feature tracking and corre-
offsets will result in an approximately linear error growth irspondences are studieddignamic visiorj15], [21], [30] which
orientation and a quadratic error growth in position. There amtilizes control of dynamical systems where an underlying dy-
long-term stable gravity based sensors for attitude estimatioamic model for the pose is used. Standard filtering or observer
(pitch and roll) such as liquid-filled inclinometers. The workindechniques are often used in dynamic vision. The control theo-
principle of inclinometers is simply that of a water level. Allretic approach has also been successfully used inline based vi-
gravity based attitude sensors are sensitive to translational sial servoing by Andreft al.[1]. In dynamic vision, the above
celerations as it is impossible to distinguish between gravity antentioned time delays and low sampling frequency typically
inertial forces. Inclinometers are also subject to low bandwidthose a serious problem when implementing the algorithms de-
There have been numerous attempts to combine the above meteped. This is especially true if a continuous-time approach
tioned sensors by using different heuristics. Aerospace applas been used. Such a continuous-time approach is what we will
cations are considered by Greene [13] and Leffettal. [18]. propose, but we claim to have an algorithm that can be imple-
mented in such a way that the estimates are high bandwidth,
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at a low frequency. Approaches along this line of thinking has
been proposed earlier by Kurazume and Hirose [17], Lobo and
Dias [19] and by Rehbinder and Ghosh [24]. Apart from these
real-time oriented advantages of using inertial sensors and vi-
sion the robustness of the system will also be enhanced as two
different sensors are used, instead of just one.

B. Observers

Pose estimation is a delicate subject since the set of all ori-
entations is not a vector space, but a manifold and a Lie group,
SO(3). In order to circumvent these mathematical difficulties,
local representations such as Euler angles are often used. A con-
sequence of this is complicated nonlinear equations and most
authors resort t&KF-based solutions (see the aforementionegdy. 1. Rigid body moving in space.
references). In this paper, we consider observability and propose
an observer where such local representations are not used. Ah&igid Body Kinematics
use of a global representation lends the paper a geometric flavo

I;&)IIowmgGman(;/tl)degs propolsegobyHKodltschek [36]' Bullo l?nijn Fig. 1. We are interested in estimating its orientation and po-
urray [6] and by Soattet al. [30]. However we do not make sition relative to the surrounding world. Our primary concern

explicit use of the diﬁergptial geometric framework and stick %ere will be rotation estimation. We denote the inertial frame by
amore standard exposition. The state evolveS©0(3) and the ;4 the body fixed frame big. Letz be an arbitrary point in

output is implicitly characterized. The observability analysis fcg ace and denote by its coordinates in the/-frame and by

this system reveals interesting group theoretic generahzatlol its coordinates in th&-frame (we will use the same nota-

of standard linear observability and the observer is designegif}, for other variables as well). The two coordinate vectors are,
such a way that the estimated state evolveSOIi3). The rota- 4 1o to the rigid body motion related via

tion estimation is solved independently of the position and these

; " ’L‘B_R(.Z’N—’I‘N) 0}

estimates can subsequently be used to formulate the position es- T

timation as a straightforward problem with linear implicit outputvherer is the vector from theV-origin to the B-origin and

function. whereR is a rotation matrix. If we now denote = »~, v =
We are of the opinion that the major contributions of thidr" /dt anda = d*r" /dt* then rigid body kinematics gives

paper is a new, theoretically sound algorithm that fuses ddtge to the following description of the camera motion:

Consider a rigid body moving in an inertial space as shown

from vision and rate gyros and an implementation which en- R= Q)R

ables fast tracking of ego-motion with a slow vision system. We { p=uv (2
also outline how these results on orientation estimation can be v =a

used to formulate the position estimation problem as a lineasthere

implicit output problem. From a control theoretic point of view, 0 ws  —ws

the observer proposed is interesting as it evolves not on a vector Q=Sw)= [ -ws 0 wi ©)
space, but on a manifold and the results of the observability anal- ws —wy 0

ysis has quite an interesting group structure. A major drawback

is the lack of experimental results and that we do not considércalled the wedge matrix due to the fact that = —w A .
how to actually find the line correspondences. Further, we cohbe symbol is the angular velocity expressed in theframe.
sider the observed lines to have known orientations. The outliN@w let us consider linek fixed in inertial space with the rep-
of this paper is as follows. In Section II, we derive the mathemdgesentation

ical statement of the problem and in Section Ill, we study ob- I, = {xN eR*:zN =¢N +dlVs,s € 1[{} (4)
servability. In Section IV, we describe the orientation eSt'mat'(Whereg,; is an arbitrary point oy andd; its direction vector. The

algorithm and prove its convergence and in Section v, we deriY')e-coordinates of the lines will be time varying due to camera
the formulation of the position estimation problem. Section VrJnotion Using (1) and (4), we obtain

is devoted to the multirate implementation and to handling the B s B N ~
problems with low vision sampling frequency and delays. We li={s" €R%z” =R (§" —p+di's),seR} (5
provide simulations in Section VII. In Appendix A, we providewhich describes the line il-coordinates.

details of the calculations in Section Ill. Remark 2.1: The representations of rigid body motion and
lines can be cast in a differential geometric framework where
Il. PROBLEM FORMULATION pose is described as an element in the Lie group of Euclidean

. . . . transformations
We will now derive the mathematical formulation of the

3
problem and describe a moving rigid body equipped with a (R,p) € SE(3) =S0O(3) xR
camera and a strap-down inertial measurement unit (IMU), i.and the lines are represented as points in the Grassmanian man-
a body fixed rate-gyro/accelerometer package. ifold Grass(2,4).
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Under this assumption, it follows th§if|| # 0 and that we
can take the following vectors as our observations:

vi = ni » Rp;(t)
1 T K3 - K3
[I7:l llpi (1)l

wherep; € {—1,1} is an unknown sign ambiguity parameter
and where

(10)

pi(t) = di A (p(t) = &). (11)

It is worth pointing out that even though the line parameters are
to a certain extent arbitrary, the problem actually is well-posed.
The sign parameter; accounts for unknown line directions and

Fig. 2. Line projected on the image plane. the normalization for magnitude. Regarding the pginon the
line, take another point which can then be writter{as: &; +
B. Sensor Measurements sd; for somes. It follows thatd; A (p(t) — ¢;) = d; A (p(t) —

We consider the body to be equipped with a strap-down), so the output equation is well defined. Note especially that
IMU. The rate gyros provide measurementsugf) and we without any loss of generality we can take;|| = 1 which we
will therefore take the angular velocity as a known entity in thghall assume in the sequel.
problem. A strap-down accelerometer measures inertial forcesAssumption 2.2:||d;|| = 1
and gravity in theB-frame so the output can be written as

w=R (a . gN) 6) C. Formulation as an Implicit Output System
whereg™ = (00— g) andg — 9.81 m/<. Itis clear that we can The input—output system we have from (2), (7), and (10) is
write o from (6) as R=Q()R
_ pT N 5 —
a=HRutg. ) 2 _ URTU(t) +gN (12)
For a discussion on inertial sensor offsets, see Section VII. Fi-  Rpt)
nally, we consider the camera. We letthe camera be a perfect nor- Yi = Rl

malized pinhole camera. For simplicity, we let the camera focghd our interest is to estimafe andp based on the measure-
pOint coincide with th@'origin and letthe Optical axis coincide mentsyi_ The sensor readings and« will be used as known
with the z-axis of theB-frame. To see how a linkprojects onto  inputs to the system. If the goal is to construct a standard Lu-
the image plané’;, consider the plang; defined by the camera enperger-type observer, the parameterwould pose a serious

focal point and the liné (Fig. 2). The line on the image planeproblem as they are unknown. This problem can be solved by
is given by the intersection df; and P;. Two vectors in are  noting that, from (10), we have
R(¢ — p) andRd. Thus, a normal vectoy to P, is given by

T pT
n=[RAARE-p]=RAANE-D)] () Ploe) = di oy =0 3
wheren is the wedge (cross) product. On the image ptare1, due to orthogonality of the vectors andp;. The formulation
the line is described by the equation of (12) that we can work with, instead, is therefore an implicit
. output problem
n" V= 0 ©) R=Q(R
. . . p=v : (14)
wherez andy are the image plane coordinates. From (9), it o = RTu(t) + gV
may be concluded that we can only deriyep to length from 0= h(R,y)
measurements of the projected line. To get a parameterization of
this measurement it is necessary to make some assumptiomterei(R,y) = [hi(R,y1),-- -, hm(R,ym)]T. It has the ad-

the length or orientation af. If we, for example, consider the vantage that there are no unknown terms in the output equation.

case where we use room corners for indoor navigation it is qultewill also turn out that we will be able to estimate the rotation

reasonable to assume that the lines we observe never coindideithout knowing or estimating. We will, therefore, in Sec-

with the B-framez-axis. If they would, that corresponds to theions Il and IV, consider the less complex problem.

camera actually being inside the walls. We therefore assuméProblem 2.1 (Rotation Estimation)Given the system

that is nonzero. An alternative approach would be to make .

assumptions on the orientationfThis is studied in [15]. To { R =Q(t)R

avoid technical difficulties we also assume th@t) is bounded. 0="h(R,y)

We make the following assumption. and measurements gft) and$)(¢), the problem is to estimate
Assumption 2.1:There is a constamt; > 0 such thal|d; A R(¢).

(p(t) — &)|| > k1 V¢, i.e., d; andp(t) — & are not parallel.  Note that for an observer design based on the system model

Furthermore, there is@ < oo such thaf|p(t)|| < k2 V¢. (15), p(t) is not required.

(15)
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[ll. OBSERVABILITY Furthermore, the finite-dimensional observability Gramian
In order to understand the structure and fundamental Iimitg/{(to’ T? for which it holds thaker M = ker U is derived and
tions of Problem 2.1, we propose to study observability of (155\'.e obtain
It will turn out that a careful treatment of the observability prop- M(ty, T) =U*U
erties of the problem will result in insights that are very rea- to+T ,
sonable and intuitive from the perspective of computer vision. = / [C(T)eA(T_tO)}
Before showing the actual calculations of observability, we will to
comment on the structure of the problem. We consiglgn as X [O(T)GA(T_tO)} dr (22)

the states and;, p(t) are the unknown parameters in the output . . .
(10). We also note thai(t) is time varying. The output equationWhereU is the adjoint operator df. If there is al” < oo and

is linear in R and the state dynamics appear to be linear. Howe ~ 0 such thal (o, T) > el V £o then the systemiis called

ever, since the states live 6f0(3) and not on a vector space,Strong_ly observable. If we now return to.(20) and pay particular
such a statement lacks meaningRlfs not confined taSO(3), attention to t_he fact that the vector spaces also a group under
then (15) would have linear state dynamics. This fact will b ector addition and that: £ is the inverse element g, then

used later on, in the observability analysis. For a linear syst ﬁp) can be written as
evolving on a linear space, thobservable subspac¥ is de- (€0) L@z €O (23)

rived by considering all the initial state values that produce the i )
same output. As the states here evolveS6h(3), a C'*-mani- where O¢ is now viewed as the unobservaldabgroupand

fold and a Lie group, what would correspond to the unobser{/N€r€® is the group operation (vector addition). This group

able subspace could be anticipated to be either an unobservgﬁ?@retic thinking provides us with the abstraction needed to
subgroup or a submanifold. We will see that an unobservakﬁrémIy (15).

subgroup will be the answer Now, we go back to our system (15) and consider a time in-
Now, we will briefly review a standard observability derivalerva! [fo. tﬁ_"'hﬁ]'f,l‘et ui assumé(to) :d Ry and ta;]ke Some
tion for a normal linear system. The reason for this is that tlgif)’ u; (which defines the outpu(t)) and assume that we are

derivation, to a large extent, can be mimicked for system (1 sgrvingm .Iinesl,,-,. Let f[he “”e? be ordered in'such away that
that evolves or§O(3). Let X be a linear system the first M lines have linearly independent direction vectors.

ObviouslyM < 3. The outputs are given, as in (10), hyt) =
5. z(t) = A(t)x(¢) (16) R(@)(pi()/|lp:s)]]) pizi = 1,...,m.LetR(ty) = So be a dif-
| y(t) = C(t)x(t) ferentinitial value and consider parameterizing all choice%of

evolving on a vector spack. Let us consider the time interval that satisfy the implicit output equation
[to.to + T'] and assume two initial conditiongty) = ¢ and 0 = h,;(Rs,(t),yi r, (t)) Vi€ ty,to+T], i=1,...,m.
x(to) = & such that (24)
In (24), Rs, (t) is the solution of the equation
U =16 () Vi€l to+T) A7) o0

_ _ o R=QHR (25)
wherey.,, () is the output corresponding to the initial valug

and likewise fory, (t). It is easily derived that assumingR(to) = So- ¥i,r, () is the output of (12) assuming
R(tg) = Ry. This is the natural implicit output generalization

Ct)®(t, to)(wo — &) =0  Vte(to,to+T] (18) of (17). Letd(t,t,) be the transition matrix of (25). We obtain

where®(t, ty) is the transition matrix for (16). Define the oper- Rs, (t) = ®(t,t0)So (26)
atorU by
and
U:X —La(to, to+T) pi(t)
iRy (1) = (¢, to) Ro 5 pi- 27
5 OO (E o) (19 i ()= 2 to) Fo @0
whereLs(to,to + T') is the set all functions The implicit output (24) is equivalent to
f:lto,to+T] — R 0 =df S5 Ropi(t) V€ lto,to+T), ’i=1-~-7(7;8)
such that where the fact tha®(¢,19) € SO(3) has been used. If we, in
ito+T analogy with (19), redefin& as
2
d .
/t0 f (T) T <00 U:]R3X3 —>L2(t0,t0+T)
T
We see that (18) can be written as i Xp(?)
X - (29)
_EO + zg € kerU (20) dngpm(f)
and we define thenobservable subspaes then (28) can be written equivalently as

O° = ker U. (21) (S5') ® Ry € ker U N SO(3) (30)
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where the group structure 61)(3) is now used§? = S; ' and and wheref; € IR® are such thaD is of full rank. The

@ is matrix multiplication). This formula should be compared to matrices/; are rotation matrices describing rotationsrof
(23) and it seems clear thatiér UN.SO(3) is a group, then (30) radians around thé&h axis. Thus, they are diagonal ma-
is the natural generalization of (23). It will be made clear that,  trices with 1 on theith position and-1 on the remaining
if strong observability holds, thelker U N SO(3) actually is a two positions.

subgroup and it, therefore, makes sense to define the followingObservation 3.1:For strongly observable systent;,
Definition 3.1: The unobservable subgroupf the implicit is an Abelian subgroup O(3).

system (15) is given by Proof: First, consider case 1). The identity eleméne
. - — O o(s)- For everyR, D TRTDT ¢ O%o(s and asRRT =1
Oso@s) = {R € SO(3):d; Rpi(t) =0 and asSS = I, every element has an inverse. A straightforward

calculation shows thaD¢,, ,, is closed under multiplication.
Vi€ to,to+T],i=1.. .m}. (31) For the cases 2) and 3);J; = I so every element is its own
inverse. It is also straightforward that it is closed under multi-
From (30), we understand that we can first compugiel/ using plication.
linear methods and then intersect wiild)(3). The associated Observation 3.2:Let R, S € SO(3). LetR ~ S, i.e., R
calculations are sketched in Appendix A.1 and here we only similar to S, if SRT € O%o(a)- Then~ is an equivalence

state the main results. relation onSO(3).
Definition 3.2: Theobservability sub-Gramianfer (15) are Proof: The fact that subgroups define equivalence rela-
to+T tions on groups in the above way is a standard fact from group
M;(to,T) = / pi(T)pF (1)dr 1€{1...m} theory[12, p. 120]. O
Jto {(di}* Given the previous observations, we can now formulate a the-

_ (32) orem about observability.
where{d;}* is the orthogonal complement span{d;}. The  Theorem 3.2 (Observability)If the system (15) is strongly
following definition corresponds to standard strong obsergbservable in the sense of (33) then it is observable up to the

ability for time-varying systems. . equivalence relation defined 1%, ;.

Definition 3.3: The implicit output system (15) is called |t should be noted that, as for linear systems, the observable
strongly observablg 3 M < M such thatv i = 1,..., M, partof the configuration space can be viewed as a quotient space
Je >0, T < oo such that #o [5, p. 60] defined by the equivalence relation

M;(to,T) > 1. (33) Remark 3.1:The unobservable subgroups (34)—(36)

- have many intuitive interpretations. Note first of all that the
The introduction ofd/ in the definition is merely a technicality D”-matrix corresponds to a change of basis reflecting the
and for clarity of presentation we will assume thidt= M. For line orientations. For the case = 1, the unobservable states
an interpretation of (33), see Remark 3.3 and the derivationsgonsist of arbitrary rotations from the true state around an
Appendix A.2. For a strongly observable system, analytic exxis parallel to the observed line. A typical example is that
pressions for the unobservable subgroups can be found.  if only vertical lines are observed, then the heading (yaw)
Theorem 3.1:For a strongly observable (15) the unobseneannot be estimated. For the casds = 2,3 it makes a big
able subgroup is given by one of the following three alternativesifference whether or not the observed lines are orthogonal.
1) One linearly independent lin@/ = 1) We first consider the orthogonal case i.e wlnL d;, i # j.
1 o0 o WhenM = 2, then Ogoﬁ) consists of all the four elements
o Jrprlo » o lDT cprr_esp(_)ndlng tol, J1,J2,J3. The states that cannot _be
50(3) ’ 0 ! 2 distinguished from the true states are those corresponding to
2N w-rotations around the two axed,d, and around the axis

P Bt . perpendicular to those. FaWf = 3 the same fact is true so
D 0 m r |D that when all the lines are orthogonal, it does not matter if we
0 ro —m observe two lines or three. Considering the other extreme, when
V242 = 1} (34) all line pairs are nonorthqgonal, we have c_)bservabiIiFy for the
1 2 ) M = 2 case up to a-rotation around the axis perpendicular to

the observed two. Fav/ = 3 we have full observability as the
_ only element ir(DgO(S) is the identity element.
ool p-Tipr ;- 3ifdy L do From an applications perspective, it is rather unfortunate that
so@ =\ TP e ifdy Ldy [~ io wi i i i )
1,2,31f dy 2 the scenario with orthogonal lines provides the least informa
. ) . (35) tion. This is because, in a typical man-made environment, such
3) Three linearly independent lings/ = 3) line configurations are most likely to be present. However, even
O%oe) = {1,D"TJ,DT Viid; L dj&dp ¥V k,j #i} (36) for the case with orthogona}l Iineﬁ/( =20rM = 3) we can
argue that we have a certain practical observability. Recall that
where the orientations that cannot be distinguished from each other
D= [dy...dyfarsr... f3] iFM <2 (37) correspond to rotations afrad (180); so with a rough knowl-
T [dr ... d3] if M =3 edge of the orientation, we can single out the correct alternative.

2) Two linearly independent lingsV/ = 2)
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Remark 3.2:If (33) does not hold then it can be argued that A
the system is still locally observable in the following sense:
There are many elements @fgo(s) that depend on(¢). They
are however bounded away frahso there is a region around
the true state where observability holds. However sji¢e as
unknown, it is hard to quantify how large this region is. Further-
more, 0%, 5 IS No longer a group and the appealing algebraic
structure is lost. In Section IV, we present a local observer which
does not require strong observability and we provide some nu-
merical estimates of the domain of attraction where it is clear
that this domain depends on the positiorp(f).

Remark 3.3: To understand the observability condition (33)
consi.der the equat!on with = 0. It can be shown (seg Ap- Fig. 3. Geometry underlying the observer design.
pendix A.1) that this would correspond tp(r) — &;) being

confined to a plane containing. An alternative formulation is In order to describe the observer, what remains is to degide
that We propose the following observer:

df ((p(t) — &) Aw(t)) = 0.

To ensure that this is not the case, we require #&t> 0 and R(0) =Ry € SO(i;):
¢ > 0 such thatv ¢ v A

(38)

(44)

Vi< M (39) where the rationale for the choice ©f is the following, as il-

lustrated in Fig. 3. From the implicit output equation, it follows

that ideally}?di € kery! so if it is not satisfied then a cor-

rective angular velocity should be applied. The angular velocity

needed for this can be directed alopgn (Rd;) which consti-

tutes the first factor in th&;-expression. The second factor is
In this section, we sketch a heuristic motivation for an olsimply h,,-,(f%,yi) and is the magnitude of the correction.

server, prove local convergence and numerically estimate its do-

main of attraction. It should be pointed out that the observerfs Local Convergence

local in the errors, not in the representation of rigid body rota- We now prove that the observer (44) is locally convergent

tion. The fact that the observer is local explains why the resufigovided that the following condition of trivial observability is

on observability, discussed in Section Ill, is not of importancsatisfied together with Assumption 2.1.

here. This has been commented on in Remark 3.3 Definition 4.1: For every index sef C {1,2,...,m} letus

define the information matrix

QUL 1) =

t4+T )
/ (df ((p(t) = &) Aw(t)))" dt >€

Jt
which can be viewed as a condition alternative to (33).

IV. OBSERVER

A. Heuristic Motivation pi(t)pl (1)

. 2
Z ()]
wherep;(t) is the shortest vector from(¢) to /;. Furthermore,

if there is ag > 0 such that for each there is an index set
I, € {1,2,...,m} such that

det Q([t7 f) Z q

for someuw(t). S(w) is defined as in (3). As the true states obethen the system is callédvially observable
(2) it is reasonable to choose Note: p; is the vectop(t) — &;(t) whereg; (#) is chosen such
thatd? (p(t) — €) = 0.

Theorem 4.1:Let us assume that Assumption 2.1 holds and
let (15) be trivially observable. Then, the observer (44) is locally

whereu(t) acts as a correction term. The resulting observer cg§ponentially convergent.

N — (45)
An observer for our orientation estimation problem must be
designed in such a way that the estimated stRt¢$ evolve on

SO(3). Itis known that elements &fO(3) obey

(40) (46)

w(t) = w(t) + v(t) (41)

be written as

R(t) = Qt)R(t) + V(t)R(t) (42)

whereV (t) = S(v(t)). This is very reasonable if compared to

the standard Luenberger observer for linear systems

2(t) = A(t)2 + L(t)[y(t) — O(6)a(t)]. (43)

Corollary 4.1: Let us assume that for eathhere are three
integersi; € I such that the lineg;, intersect in a common
point£. Assume furthermore that

p(t) = € =Y, (0

where |a;;| > o > 0 for somea. Then the observer is
convergent.

(47)
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Proof of Corollary 4.1: It is easy to see that the system iand
trivially observable for this simple case. . )
Proof of Theorem 4.2:Define the error rotation R? =1 —=V2S(w)||X| + O(| X[*). (59)

R=RR" (48) O is the Ordo-symbol, that i€)(z*) is a possibly infinite poly-
nomial where the term with the lowest degree is of dedree
R Now, if we letw = Rw and use the fact thak” S(w)R =
X=I-R. (49) S(Rw) then we obtain

The error rotation dynamics are k; _
X0 = { & (Ll 5@ b IXIP + (X ),

(60)
. _ . _ Note that due to (55), the Ordo-term is bounded as a function
Consider the Lyapunov function candidate from [16], given agf time. What now remains is to show that the quadratic term is

and the estimation error

R=RRT + RRT = S(w)R - RS(w) + Y ViR.  (50)
el

Vix) = X3 {XTX} bounded below in time by a strictly positive constant. We have
2 2 — T
- - t)S di = — ANd;) = (d; N p; 61
- BOU-R) . pi (1)S(w) pi (@A di) = (di Api)Tw (61)
= 2 = tr{X}. 1) and also that
The total derivative is di A ps = ds A (ds A (p — &) (62)
_AIXE ey — oy . -
dt 2 Let us now assume that the pofptis a time varying point such

- —+tr H—V:R thatp;(t) = p(t) — &(t) (see Definition 4.1). Then, it follows
tr{S(w)R — RS(w) + Y _ViR} = tr{-V; R} thatp p
= Z tr{v; A R}. (52)

. di A (d; AN(p—&)) = —pi. 63
In order to show local exponential convergence, we must show i Mdi A (p = &) pi (63)
that—V > c||z||” for some constants > 0, p > 1. Asimple Thys, (60) can be written as
calculation shows that

~ A o ~ . _ pr1 _
trf{v; A R} = — k;tr {{(yi A Rdy)yT Rd;} A R} V(X t)=w" {Z ki APAE } w|| X1+ O X[*) (64)
iz pT RT RRd; where ||@|| = 1. Finally, as a simple consequence of that
~leill ) i S (pip?)/(IIpsl|?) > ¢ > 0 we have that
x tr{(Rp; A Rd;) A R} ) , ,
k; =V (X,t) > qmin{k; }||X||* + O(|| X 65
" ||2pTRTRRd (X,t) = qmin{k; }|| X|| (x1) (65)

R . : which concludes the proof. O
X tr {—(Rp,,-,d?RT - RdiprT)R}
C. Numerical Estimation of the Domain Attraction

- H"'inszRTRRd JTRTR?R;  (53)

The observer (44) can, according to Theorem 4.1, be shown
to be exponentially convergent. It is of interest to estimate how
large initial errors can be tolerated and how this is connected to
V= Z ki S T RT RRd;pT RT R*Rd;. (54) the position vectop(t). 'The following Fheorems from [34] can

llp4ll be used to ascertain this. Let us consider the autonomous system

so that we have

As a consequence of Assumption 2.1, therekare 0 andk <

oo such that &= f(@). (66)
k; _ Definition 4.2: Suppose 0 is an equilibrium point of (66).
k< ilP <k (55) ' The domain of attractiol is defined as
Use now Rodriques’ representation for rotation matrices (see D ={zo € R":z(t,z0) — 0ast — 0}. (67)
[22, p. 28])

Theorem 4.2:Suppose there exist a Lyapunov functidifior

R=1— S(w)sinT + 5?(w)(1 — cosT) (56) (66). Letc be any positive constant such that the levelsetc)

defined to be the largest connected set containing the origin such

thatV(z) < cis contained in the domaifi = {z # 0: V(z) >

| X% = 2tr(I — R) = 4(1 — cos ) (57) 0, V(z) < 0} and is bounded. Thehy(c) is a subset oD(0).
From (54), we conclude that is a function ofp but that

it can be taken to have unit length. We now use, once again,

the Rodriques’ representation (see [22, p. 28]) and wXite-

S(w)sinv — S?(w)(1 — cosv) where||w|| = 1 should be

wherew € R?, ||w|| = 1 and wheres € R. By noting that

we have
Byl

R=1I-S(w )\/E

+O(|IX]?) (58)
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v=031756 v = 045103 to find an observer, remains an open issue. We consider the case

15 i N L5 - . . . . .
& % & ’ S % where three lines intersect in a common pgianhd we estimate

( N 7 N the position relative to this point. The poigiwill now be used
l
|
|

instead of the arbitrary points on the lines. The translational
parts of (12) are

N
/

elevation
elevation

0.5 05f L — — — —

“““““““““““ ‘ 2 p=v
v — RT N
00 0.5 1 1.5 00 0.5 1 1.5 v= R (t)u(tp)7 + g (73)
azimuth azimuth Yi = ,U/'LR(t)m
v =0.55481 v =0.6435
15 - 1s whereu(t) = R (a — g") is the accelerometer output. We also
A TN . VRN have the rotation estimafé and we propose to use this estimate
g 17 R g ! 7 as if it was a perfect estimate to transform (73) to a linear im-
z { ! b L o plicit output system. Let us define
Sosf———————— ®o0s .
L__] (; ) r(t) =RTu(t) + gV
—_pT,.
% 05 1 15 % 05 1 15 zi =R"yi. (74)
azimuth azimuth

Observe now that

Fig. 4. Level curves\(v) (solid) and estimates df, (v) (dashed). T(t) :a(t) + (I _ ﬁTR) (qN _ a)
> Pi
thought of as a direction of rotation andas the angle of ro- 2z =pi RTR(t) loall (79)

tation. By virtue of (57),Ly(c) can be written as
Ly(c) = {X: X = S(w)sinv — 5*(w)(1 — cosv) :

Therefore
/ r(t) =a + f1(t)
|lw|| = 1, v < arccos (1 — Z)} . (68) (p—&)"2 =0+ fa(t) (76)

Now, we defineV,(v) as the set op such that is decreasing where f1(t) — 0, f2(t) — 0 since the observer presented in
on the level setd.y (c(v)) wherec(v) = 4(1 — cosv), so that  Section IV is convergent. As these unknown error terms vanish

Vp(v) = {HpH -1 —V(X, t) >0 we use the model )
YV X € Ly (c(v*)) wherev* < v}. (69) a4 (p(t) = &) = v(t)
Ly(t) =r(t) (77)
An estimate of the domain of attraction is obtained by studying (p(t) — €)Tz =0

the setsV,(v). To be able to obtain the estimate numencall)gs a model for (73). The quantitiest

define ) andz;(t) are measur-

able quantities derived from the accelerometer and from the
— V(X (v,w),p). (70) camera. Let us introduce the state veetor [(p — g)TvT]T

and rewrite(p — £)Tz; = [2707] 2. We can write (77) as the
With a slight abuse of notation and using the spherical coordirear implicit output problem

nate representation f we obtain the following: Problem 5.1 (Position Estimation Using Lines\Ve are

. iven the system
h(v7aaz7ael) = min — V(v7w7p(aa27ael)) (71) g Y

i
llwl|=1

h(v,p) = min

1
flwll=1

{ &= Az +g(t) (78)
which can be visualized graphically by considering the level 0= B(2)x
curvesA(v) whereh = 0
where
A(W) = {aaz, der: h(v, aqz, ae) = 0}. (72)

a= (0 0) a0=(,0) 79
In Fig. 4, a sample of these level curves can be seen along with a 0 0 Y r(t)
conservative estimate o, (v). The figure illustrates how the do-
main of attraction gets smaller and smaller, the closer the camera
is to the lines observed. This is of course natural as we then get z 0
closer and closer to violating the assumption 2.1 gt # 0. B(z)= |2 0]. (80)
The minimization in (71) is carried out by exhaustive search. z 0

Assume that the measurementg;0f) andz(t) are known in a
certain interval of time, the problem is to estimate

In this section, we turn to the problem of estimating position The state dynamics for system (78) are quite simple (three
and velocity assuming that the rotation matrix has already begarallel double integrators). A Luenberger type observer for crit-
estimated. We will show how the orientation estimates can kmlly stable linear implicit output systems has been shown to be
used to formulate the position estimation problem as a lineawnvergent [21] by Matveest al. That particular choice of ob-
implicit output problem. To actually solve the problem, that iserver is not applicable here since the system is unstable. How-

V. TRANSLATION ESTIMATION
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ever, the observability Gramian for linear implicit output Sys- vien
tems is also given [21] and it is fore] - N

y(kTv) y(kTi — Tg)
to+T INS - predict L,

M(to,T) = / eA"B(2(1))B(z(1))Tet Tdr  (81) wkTy) | wkTs — Ty)
o Re-T | (R
and strong observability amount to the existence,af > 0
such thatM (to, T') > ¢I V to. In order to understand this con-

dition, we consider the equatio¥f (o, to + 7")n = 0. Calcula- O(t,t —Ta)

tions similar to those in Appendix A.2 shows thap{t) — ¢ is Fio 5 Data flow in the implementation
confined to a plane, then observability is lost. This is quite nat> > P '
ural as in order to achieve depth information, the camera must . - . .
move in such a way that a stereo effect is achieved. Wﬁjere@(tk? tx — 1) is the prediction, obtained by solving
j—lsfb(s, t—Ty) = Q(s)P(s,t — Ty)
VI. MULTIRATE IMPLEMENTATION St —Ty,t—Ty) =1

In this paper, we have so far assumed that sensor data is don®(x, t, — T,). With this multirate prediction based architec-
tinuously available. In an implementation, sensor data will dfireitwill be possible to obtain high-bandwidth (due tothe IMU),
course be sampled and the observer has to be integrated in léigg-term stable (due to vision) orientation estimates with a slow,
crete time. Here, as in the rest of this paper we mainly consid&e-based vision algorithm. This is due to the complementary
rotation estimation but the implementation presented could justndwidth characteristics of vision and inertial sensors.
as well be used for position estimation. As the line detection al-
gorithms will take a considerable amount of time, it will be nec- VII. SIMULATIONS

essary to make an implementation with this in mind in order t0 14 gemonstrate the observer convergence and to show the

geta high-bandwidth system. We would like to point out that thge ot of gyro offsets and of the multirate implementation we
observer itself is convergent to any trajectdift) and can thus i consider some numerical simulations. We let the camera

be said to be of infinite bandwidth. What will limit the achieVyyqye in front of an orthogonal comer which for simplicity is
able bandwidth here is the sampling frequency ofitrextial

taken as the origin of the inertial frame. Thgs= 0 andd; are

sensorsit might be argued that what should limit bandwidth igng three unit vectors along the coordinate axes. The unknown
the computational time associated with thsion data(which . 1arg position is given by

will induce low sampling frequency and time delayed data) but

(84)

: 2T
that is actually not the case. The key insight is that the IMU pro- 6 ?Sm?g?t)r
vides excellent high-frequency information and the vision data p(t)=| 7]+ | Lsin(3Ft+F) (85)
will only be used to compensate for the slowly varying errors 6 3sin (%’f + %)

induced by the integrated gyro signals. In the light of this, thgnd the orientation trajectory by the Euler angles yaw pitch
low vision sampling frequency and the time delay is no Iong@p), roll (¢)

a problem as it will implicitly only be used for slowly changing

signals. Regarding the time delayed vision data, this problem P 22 sin (gt)

can also be solved by a proper use of the IMU. Predicting the T /T T

orientation ahead in time for, say a few seconds, is easy, using 0 =3 5m (gt + Z)

integrated gyros. This prediction will be associated with a small é T (gt n z) (86)
error but for the time span considered here, this error can for 4 %M\g 2

most practical cases be neglected. The observer can now be\jiith are translated into a rotation matfiXt). We would like
with old data, estimating old orientations which are used, tgy point out thathe only reasorfor using yaw/pitch/roll here is
gether with the predictions, to Obtain the actual Orientation. pedagogic_ It iS hard to Visua"ze rotations in terms afa_ma_

To put all this on a firmer basis, let the IMU sampling fretrices. The observer is initialized with an error corresponding to
quency bel/T;, the vision sampling frequency i¢'7y and 3 rotation ofr/8 rad around a randomly chosen direction. The
let the vision data be delayed Hy] Let also, for Slmp|ICIty, gain parameters are takenkas= 2/\/§ The IMU Samp”ng in-

Ty = pTr andTy = qT7 wherep andq are integers. The struc- terval isT; = 0.01 s, the vision sampling interval & = 0.1's
ture of the implementation is given in Fig. 5. The multirate obssjs the dela$; = 0.1 s. We will show two simulations with the
server s above parameters. InFig. 6, true and estimaitell¢ can be seen
. R k whenthere is no gyro offsetand in Fig. 7 when there is arate gyro
R(7iy1) =TT AV R(7), for » €7 offset of 0.1 rad/g.)/lt can be seen frogm both figures that the ?;ti-
- T B mated angles tend to the true. It appears however that in the case
B(riir) =e? 0 (), else (82) with gyro gﬁsets, the convergenceri)gslower. Thisis confirmed by
wherer;, = kT; — Ty, Qi = Q1) Vi = V(ye(r), B(r)).  Plotting|| X || [see (51)]in Fig. 8. Itis clear that the convergence
Based on this estimatd&(#, ) wheret;, = kT is computed as IS slower when the offset is present. Note however that the es-
timates still converge to the true values. It is also apparent that
R(tk) = O(tg, ty — Td)fi’(tk —Ty) (83) the error decreases eveély when visual data arrives.
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VIIl. SUMMARY AND DISCUSSION

In this paper, we have discussed a control theoretic approach
to camera pose estimation. We have studied how to simultane-
ously use inertial sensors and computer vision and have paid
particular attention to an implementation that is consistent with
real-time demands. We have solved the orientation estimation
problem with a locally convergent observer where the estimated
states evolve on the Lie group of rotation matrices. When dis-
cussing observability we were able to show that the system it-
self actually is not only locally observable and it would there-
fore be interesting to design an observer with nonlocal conver-
gence. This is one issue of further work. On a more general
level, this problem could be studied in the context of implicit
output systems evolving on manifolds. Position estimation is
not at all solved in this paper and an observer for system (78)
should be designed. A first attempt could be to try an implicit
extended Kalman filter such as proposed by Scetttd.in [30].

Fig.6. Estimated and true yaw pitch and roll angle. There is no rate gyro offdbtmight also be possible to generalize the ideas by Matetev

used in this simulation.

0 1 2 3 4

5
t[s]

al. to unstable systems. The final test of the ideas presented is
to implement the algorithms on a mobile robot. For the ideas
presented here to be implemented there are a number of ques-
tions that must be answered. Consider the perhaps simplest re-
alistic scenario, that of a mobile robot moving in a structured
indoor environment. We are assuming that the direction of the
lines are known. In an indoor environment, the number of or-
thogonal triplets corresponding to different corners can rather
safely be assumed to dominate over those lines that do not cor-
respond to these corners. With the robot starting in a standstill
position, the accelerometer can be used to determine initial pitch
and roll and as zero yaw anyway is arbitrary, good lines with
their directions along the, y, z-directions should be possible

to find. Once this initialization phase is completed and the robot
starts moving, these lines can be tracked using the IMU to help
solving the line correspondence problem. The IMU should also
prove helpful when handling the problem of disappearing lines.
If the lines are obscured by other objects, the IMU can be used
for inertial navigation while searching for new lines. Handling
these problems is far from easy but the simultaneous use of vi-

Fig. 7. Estimated and true yaw pitch and roll angle. There is a rate gyro offgion and an IMU provides new possibilities for doing it.

of 0.1 rad/s used in this simulati

on.

0.7

0.6

0.5

0.4

0.1F

With gyro offset

No gyro offset

0 1
0 5

Fig. 8. ||X(¢)]| » for the case with and without rate gyro offsets.

t[s]
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APPENDIX A
OBSERVABILITY CALCULATIONS

A. The Unobservable Subgroup
The unobservable subgroup has been defined in (31) as

O%ow) = {R € SO(3):d¥ Rpi(t) = 0
Vt € [to, to + T,

and it has been clarified thaﬁgo(3) = ker U N SO(3) with
U given by (29). Here, we will first computker U and later
consider the intersection withO(3). Let us, with a slight abuse
of notation, redefind/ as an operator froriR® as opposed to
R3X3 by
U: Rg —>L2(t07 to + T)
di X p1(t)
x =C(t)x (88)
dﬁXpm (t)
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wherez = X and where and consequently we have the block diagonal matrix
T T
Pi ® dl ,01101T 0 0
C(t) = : . (89) P = 0 p2p3ba<ns 0 . (98)
oL @ dl 0 0 p3P3 3< 1

® is the Kronecker product. A brief summary of some usefy is also clear that
properties of Kronecker products and vectorized matrices is

found in Appendix B. It easy to derive the adjoint operdtdr ker U = {a, =Vyy= [ley;—”yg]T
of U and the observability Gramian is given by
to+T ot T T 2 .
M(to,T) =U"U = / Ct(r)C(r)dr where ; i (T)yil"dr =0 Vi< M. (99)
Jto 0
to+T Regardingker U it is clear that it is nonempty becauge= d;,
:/ Q(r)dr (90)  as defined above, is a solution. As a matter of fact, it is at least
to three-dimensional. The best observability that can be achieved

In the sequel, we will consider the case with = m, i.e., . ; ;
N . ) ! ' s, thus, given by the existence®f ¢; > 0 such thatv ¢
when all the lines are linearly independent. In Remark A.3, we 9 y Fei>

comment on then > M case. t+T -

If the observed lines are oriented along the coordinate axes,Mi t.T) = / pi(t)p; (t)dt
calculatingker M would be straightforward. The general case .
can be transformed to that special case by applying a chang
basis. Recall that the lines are ordered in such a way that

>el, i<M
{di}+

eof . ) . _— (100)
ich is what has been defined in Definition 3.3 as strong ob-
gﬁer ability. We have provided an interpretation of this condition
first M d;-vectors are linearly independent. Teke M vectors . Vabiiity. Ve provided an Interp : 'l '
o . in Remark 3.3 and in Appendix A.2 we have provided the calcu-
fi, 3 =M +1,...,3 such that the matrix . . M ;
_ lations supporting this interpretation. From now on, we assume
D= { [di,....dafrags .o f3] iEM <2 (91) that(100) holds and proceed to the problem of computing/ .

[di,...,ds] if M =3 Given (100) in (99) we see that for< M, y; = d;«; are solu-
is full rank. LetV be a 3x 3 block matrix of 3x 3-blocks such tions to the integral constraint for some € R. Forl > M, y;
that that thd, n-block is is free and can be written in the badksasy, = D¢, for arbi-
Vin = D Tenel. (92) trary& € R®. In a shorthand notation
V is full rank. The identity yi = diudi<nr + D&éisne,  1=1,2,3. (101)
-1
D™d; = e (93) Inserting (101) inc = Vy from (32), we obtain
will be used repeatedly. Now, let us define
P(t) = VIO TCH)V (94) Vo) =(V)uy
We have . =D~ Teier, (dieudi<nr + D&iisnr)
. M . - =D""e; (ab<md D™ + 815008 ) e
c@t) C(t) = Z (pi(t) @ di) (pi () @ d])  (95) —DTAD ¢, (102)
=1
and using (132)—(135) from Appendix B, we have tltel)th where
block " (06151gM€1T + 1> &F
A= | asbocrrel + bos ¥ (103)
CHTCWr =Y _(pi)k(pi)idid] - 96 2SMTR, T 2 M
[C(t)" C()]ka ;(P Ji(pi)idid,; (96) asbaersel + gonrl
Now, the(g, )th block of the matrix” can be derived as We can now formulatéer U and we do this for the original
M3 ., definition (29) ofU, that it is as an operator frofii®**. As we
Py = Z Z (V )qk Q11 Vir considerz = X, by reverting the vec operation for aXi €
i=1 k=1 ker U, we have the following:
M 3
_ =T T _ =T T
:Z Z exe? D7 (o) (pi)idid? D~ eel X =D AD" [erezes) = D™ AD (104)
i=1 k=1 where A is given by (103). We now proceed to intersect with
Mo 3 e e S0O(3). ForX € SO(3), it must hold that
= i)k(pi)iexe, D™ d;d; D™ epe
;,;(” eloddieseq ’ XTX =DATD-1D-TADT = DATD-LD-TADT
3 M =DAT(D"D)'ADT =1 (105)
_ T , Ay
= k;l €k Z;(pz)"'(pz)l&:q&:’“ which is equivalent to
3 AT(DTD)™'A = (DT D)~! (106)
= erel (pg)(pq)ibr=gbq<nr and that
k,l=1

5

=PgPy Oq=rbq<nr (97) 1 =det X = det A. (107)
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The (106) and (107) constraing and will be explored further and by using (114) we see thai«,. Using the same thinking

separately for each of thi&/-cases. for finding the sign combinations as in tii¢ = 3-case we get
1) Three Linearly Independent Lines:et us assume that that

M = 3in (103). Then, we obtain

- 3ifdy f do
030(3) = { I,D TJiDT 1= { . .
A = dia 108 1,2,3if dy L dy
J[arazas]) (108) (119)
for somea; € R that will be determined. Denotingy/ = 3) One Line: Let M = 1in (103). Then
(DT D)~ we get from (106)—(108) that ool
161
Ozi()éjWij :Wi]' (109) A= ( 52; ) . (120)
123 =1. (110) 53

By letting f> and f3 in (91) be such thab is orthogonal, (106)

SinceW'is of full rank andW;; = 0, we have simply states thatl be a rotation matrix. It is then clear from

o = +1. (111) (120) that
It now follows from (110) that, either two or none of the is 1 0 0 -1 0 0
—1. Thus, we have at most four elements. The solution that all A={0 rn 7 0 7 7
o1 = 1 corresponds to the identity solution 0 —r2 0 r2 —m
wherer? 4+ 73 =1 (121)
X=DTIDT =1I. (112)
are the solutions. We have

Consider now the solution candidate = a3 = —1. We note
that it exists if and only ifd; L ds&ds;. From the (109) for _ 10 0
; . : A O%oy = L,DT0 r 7 |DT
1 = 1,7 = 2,3 we infer thatW;, = W3 = 0 which in light 50(3) 1 2
of symmetry of and DT D demands thad? dy = d¥ d3 = 0. 0 —r2

choice of indices is arbitrary we have showed that¥br= 3 0 m

The if part of the statement is equally straightforward. As the -1 0 0
DT DT
0 To —T1

O%oz) = {1, DT IiDT Vi:d; Ldj&dpVk,j#i} (113)
vr%+r§:1}. (122)
whereJ; are diagonal matrices with 1 on positioand—1 on
the two remaining positions.
2) Two Linearly Independent Lined:et us now consider g Interpretation of Strong Observability

M = 21in (103). It follows that In Definition 3, strong observability was defined and in Re-

arel mark 3.3 we gave an interpretation. The calculations supporting
A= | azel (114) this interpretation are given below. Consider (33) with- 0.
T Take basis vectors;, g; for {d;}* such that{d,, f;,g:} is a
right-oriented ON-base and study the kernel of

for someay, as € R, &3 € IR3. Let f3 in (91) be orthogonal to .
d, andd, and of unit length. Then, we have ng> Milto. ) (fi i)
T A 0 ‘ 0 0
b= ( 0 1> @18) (LT P [0 T () finT (7)gidr
where W ol @ il (Dgidr [T o] (T)giPdr
(123)
_ T
A=ld & [di d] (116) There is a nonempty kernel if the determinant of the right hand
and (106) can be written as side is zero, i.e.,
0 0 0 to+T rtog+T
a1 -1 ([ Q1 T P T 2
A / pi (T)fil"dT / p; (T)gi|~dt
(0 a2> <0 a2> <0> +€3€§ to | () | Jto | () |
(0 0) 0 to+T 2
AT 0 ([ Aol naar) —o. @29
=" 1) @ Jto

According to the Cauchy—Schwartz inequality, (124) is satisfied
if and only if

0
&= 0 (118) pi (t)gi =0 Yt € [to,to +T]or
+1 pT () fi =XpT(t)g YVt E [to, to+ 1] (125)

From (117), it can be deduced that
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for someX € IR. Using (11), the definition ofp, and that The vec operation is defined by stacking matrix columns in a

{d;, fi, g;} is aright-oriented basis, this is rewritten as

(p(t) — €)T fi =0 Yt € [to, to + T) or
(p(t) — &) " gi =A(p(t) — &) fi

YVt €fto, to + T1. (126)

column vector according to

A
vecA = (131)

Ao

whereA. ; is A’s j:th column. For matrices of compatible di-

As f; andy; are fixed, this means th@p(r) — ¢;) is confined mensions, the following rules apply:

to a plane containing;. An alternative formulation is that

dF ((p(t) = &) Av(t) =0 Yte[to,to+T].  (127)
To prevent that this is not the case we demanditi&t> 0 and
¢ > 0 suchthatv ¢

=1 m

(128)

rt+T )
/t (dF ((p(t) = &) Ao(t))) " dt > ¢,

C. Linearly Dependent Lines

In Appendix A.1, it was assumed that = M, i.e., that

(1]

(2

all lines have linearly independent direction vectors. Here, well

comment on then, > M-case and motivate why the structural

results still hold. Consider for example the cdde= 3, m = 4

and letd, = dy, that is two of the four lines are parallel. The

matrix P from (98), for this case is given by

1Pt + papl 0 0
P = 0 papy 0
0 0 psp3

As dy = dy, ker U from (99) is still the sameker U define the
unobservable subgroup so the fourth line does not have any in-

[4]

(5]
(6]

(71

fluence on the observability structure of the problem. Regarding[®]
the conditions of strong observability the extra lines does haVFm]
the influence that could be expected. The more lines that are
observed the easier it is to achieve strong observability. The ob-

servability sub-Gramians (32) fér= 1 is for this example

to+T
Mi(to, T) = / P (T)PT(r) + pa(r)oT (7)dr
”1}(129)

As p; andp, typically are not parallel, it is easier to achieve full

rank with thep,-term than without it.

APPENDIX B
VECTORIZEDMATRICES AND KRONECKERPRODUCTS

Let A be an x m matrix andB ak x [ matrix. TheKronecker

productof A andB is thenk x ml matrix A ® B given by

A® B = [A;B]. (130)
An example is that ifA = <a11 12 ) , then
a1  a22
_ a11B a12B
A®B_<a213 022B>'

vecABC =(CT ® A)vecB (132)

(A® B)(C ® D) =(AC) @ (BD) (133)
(A B) '=4A"1e B! (134)

(A B)Y =47 @ B”. (135)
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