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Robotic Motion Planning and
Manipulation in an
Uncalibrated Environment

The authors analyze planning and control problems in “Robotic Manipu-
lation” in an uncalibrated environment consisting of a PUMA 560
robotic manipulator, a rotating turntable equipped with an encoder
and a CCD camera based vision sensor fixed permanently on the ceil-
ing. It is assumed that a part with a known shape but unknown orien-
tation is placed on the turntable which is rotating with an unknown
motion dynamics. Furthermore, the calibration parameters are a pri-
ori assumed to be unknown. The objective is to track the rotating
part with an a priori specified relative orientation. The task consid-
ered is of importance in various problems concerning industrial
automation, such as part-feeding and tool-changing.
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n this paper we study the problem of Motion Planning and
Manipulation in an uncalibrated environment with Mult:-
sensor Fusion. An important aspect in our study is the special
role played by Vision. In many instances, we emphasize, vision
- alone is not sufficient, and one must combine visual informa-
tion together with one or more additional sensory inputs,
leading to many multisensor Fusion-Based algorithms dis-
cussed in this paper. Before we elaborate on these algorithms,
a few background and some-
what historical remarks are in
order. Control of robot
manipulators, with vision in
the feedback loop, has an
exciting history starting with
the pioneering work of Hill
and Park [1], Weiss, Sander-
son and Neuman [2]. Subse-
quent work in this area has
focused on Visual Servoing,
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wherein the emphasis is to visually locate the position and
orientation of a part and to control a robot manipulator to
grasp and manipulate the part, If the part is not stationary,
then the process of locating the part and repositioning the
robot must be performed utilizing Feedback Control, that has
been subsequently studied in [3] and [4]) and many references
therein. Use of vision in the feedback loop has many advan-
tages over the more direct look and go approach. Some of the
advantages are that a visually
guided robot is more flexible
and robust and has the poten-
tial to perform satisfactorily
even under structural uncer-
tainty. This is evidenced by
the proposed Controlled
Active Vision scheme intro-
duced by Papanikolopoulos et
al. [5], where the goal is to
accomplish the task in spite of
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Figure 1. A block diagram for tracking showing feedback signal fo the
motion planner.

Figure 2. A typical manufacturing workcell.

environmental and target related unknown and possibly
changing factors.

The concept of Multisensor Fusion is to combine data
from multiple sensors to obtain inferences that may not be
possible from a single sensor alone. There are many different
schemes of Multisensor Fusion in the literature, see for exam-
ple [6], [7] and many references therein. As opposed to the
traditional approach of Multisensor Fusion-Based Servoing,
where the sensory information automatically generates the
feedback control, we propose in this paper a Multisensor
Fusion-Based Planning, where the sensory information auto-
matically feeds the motion planner (see Figure 1). The motion
planning schedule is generated autonomously, as a result, and
the robot controller gains K, and K, simply would adjust the
input to compensate for any online errors in the position and
orientation of the robot end effector. This simplifies the prob-
lem of controller synthesis while relegating the computation-
al burden from the controller to the motion planner. On the
other hand, the planner has an additional structure, since it
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now receives (multi) sensory inputs from “vision” and other
encoders (not shown in the figure).

EXPERIMENTAL SETUP

For the purpose of experiments, we consider a manufacturing
workeell as shown in Figure 2. The workcell is equipped with a
rotating conveyor (equipped with encoders that measure the
rotation angle), a robotic manipulator and a computer vision
system with a single CCD camera. The precise relative posi-
tions of the camera, robot and the conveyor are assumed to be
unknown. In spite of the lack of calibration data, the objective
is to compute the instantaneous position and orientation of a
part placed on the turntable, with respect to the coordinate
system attached to the base frame of the robot. The second
objective is to feed the above information to a motion planner
which in turn provides the required control to the robot
manipulator. The planner computes the relevant position,
velocity and acceleration profile that the robot end effector
needs to follow in order to achieve the desired task, which in
our experiment is to pick up a part from the rotating conveyor.

In order to achieve planning and execution of the above
prescribed task we make some assumptions about the work-
cell which we now describe. The precise position and orienta-
tion of the camera with respect to the robot coordinate frame
are assumed unknown. Additionally, the precise position and
orientation of the rotating conveyor with respect to the robot
coordinate frame are also assumed unknown. The plane of the
conveyor and the horizontal plane of the base frame of the
robot are assumed to be parallel. The part is assumed to have
a known simple shape. In particular, we assume that observ-
ing feature points placed on the top surface of the part
enables one to determine the orientation of the part. The
entire workcell is assumed to be in the view field of the cam-
era. The center of the conveyor and a reference point on the
conveyor is also assumed to be observed by the camera. Final-
ly, the intrinsic parameters, namely the focal length, etc., of
the camera are assumed to be known.

The technical contents of the paper are now summarized.
Since the camera has not been selectively placed at any specif-
ic known position in the workcell, we propose a virtual rota-
tion algorithm that would virtually rotate the camera to a
vertical position with respect to the rotating conveyor. The
process of virtual rotation enables us to calibrate the position
of the camera. Since the position and orientation of the part
on the conveyor are assumed unknown, we subsequently
describe an algorithm to compute this. This is first done
assuming that the height of the part is negligible, compared
to its dimension. Subsequently we consider parts with feature
points that are at a certain height above the conveyor. All of
this is described in the next section.

In the subsequent sections of this paper, we consider the
problem of robot calibration. A priori, the position of the
robot is assumed unknown with respect to the coordinate
frame attached to the conveyor. The associated calibration
parameters are computed by observing feature points on the
end effector of the robot. Our final problem is to derive a con-
trol law for tracking a rotating part on the conveyor, This is
achieved by synthesizing a plan for the robot to approach the
rotating target with a prescribed orientation. In doing so, we
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implement a parallel guidance controller, which guides the
end effector to move parallel to the conveyor above the rotat-
ing part. In order to avoid actuator saturation, an error reduc-
tion term is added to the position and velocity of the part to
form a desired position, velocity and acceleration profile that
the end effector would follow. The error reduction term is

carefully reduced to zero using both fime based and event

based approaches (see [11] for details about event based
approach) leading to an implementable tracking control law
that avoids actuator saturation. We conclude with a descrip-
tion of various experimental implementations.

ESTIMATION AND CALIBRATION

Virtual Rotation

As indicated before, we assume that the camera has been
placed at an unknown position in the workcell. We now
describe a virtual-rotation algorithm to ascertain the relative
position of the camera with respect to the coordinate frame of
the conveyor. Note that any point on the conveyor undergoes
a circular trajectory as the conveyor rotates. The image of
such a circular trajectory is an ellipse on the image plane of
the camera. The shape of the ellipse depends on the relative
orientation of the camera with respect to the normal vector to
the plane of the conveyor. The virtual-rotation algorithm
hinges on the simple fact that under a suitable transforma-
tion, the elliptic image of the circular trajectory can be rotat-
ed back to a circle. This transformation can then be applied to
the entire image so that the transformed image is what the
camera would have seen if its optical axis was perpendicular
to the conveyor. From this special fop view of the camera, the
relative position and orientation of the part with respect to
the rotating conveyor can be easily obtained. The details of
the steps involved in virtual rotation are described as follows
(see Figure 3).

Consider a set of / reference points on the image plane. At
first, a rotation of the camera around its optical center is
applied to transform the image of the center of the conveyor
to the center of the image plane. Next we obtain parameters
that describe the ellipse traced out by the 7/t reference point
on the image plane. Recursive least squares fitting algorithm
is used for this purpose. Subsequently, a rotation around z-
axis of the camera'is applied to transform the major axis of
the ellipse on the image plane to a position parallel to the y-
axis of the image plane. Note that this would automatically
place the minor axis along the x-axis. Finally, a rotation of the
camera around the y-axis of the image plane is applied to
transform the ellipse to a circle. This circle would automati-
cally have its center on the x-axis of the image plane.

The virtual rotation algorithm, as outlined above, provides
not only a technique to calculate the relative position and ori-
entation of the part, but also a method to compute the orienta-
tion of the optical axis of the camera with respect to the
vertical line. This algorithm, therefore, has been used in both
camera calibration and in localizing the part on the conveyor.

Multi-Sensor Integration and Part Localization
We have already indicated how virtual rotation algorithm can
be utilized to obtain the relative position and orientation of a
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Figure 3. The virtual rotation scheme.

part on the conveyor. In fact, the algorithm computes the
projection of a part on the conveyor plane along the optical
axis of the camera. Thus if the height of the part is negligible,
compared to the length and width of the part, the position
and orientation of the part can be ascertained from its projec-
tion on the conveyor plane.

If the height of the part is not negligible, the feature point
observed on the part may be assumed to be at a certain height
h from the conveyor plane (see Figure 4). Thus if r, is the true
position of the feature point, the virtual rotation algorithm
provides the coordinates of the projection r on the conveyor
and computes the line joining r and 7,. It is not possible to
compute h from this data alone. However, by observing the
same feature points at various instants of time (at least two
are required), and by repeated application of the virtual rota-
tion algorithm, one computes a linear relation between the
height and the cartesian co-ordinates of the point r. The
height h is readily computed using least squares approxima-
tion. For details we would refer to [10].

What we have outlined so far is that for a planar or for a
non-planar part, it is possible to compute the positions of fea-
ture points on the part, using repeated application of the vir-
tual rotation algorithm. The relative position and orientation
(relative with respect to the rotating axis on the conveyor) of
the part on the conveyor can therefore be ascertained. For the
purpose of tracking the moving part, it is necessary to com-
pute the absolute position and orientation of the part
(absolute with respect to a fixed axis on the conveyor). This is
achieved by fusing information with an encoder sensor on the
rotating conveyor. The details are now explained.

Assume that we have two co-ordinate frames on the con-
veyor, one of them is stationary and the other is rotating with
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Transformed Image Plane |

fact since the encoder measurements are updated
at a very high frequency, it is possible to obtain
absolute information in real time, without requir-
ing that the relative information be updated at a
high frequency. Computational burden on the
vision-based algorithm is therefore greatly reduced.

ROBOT CALIBRATION

In this section, we turn our attention to the robot

i Disc Plane D

and recall that we do not assume position and ori-
entation of the base of the robot to be known a
priori. This would typically be the situation if a
mobile robot has traveled into an uncalibrated
workspace. The goal of this section is to attempt
to localize the robot using vision once again. We
assume that there are feature points on the end
effector of the robot that are visible by the cam-
era. The calibration coordinates are computed
from this information. The details are described
as follows.

In order to determine the relation between sta-
tionary frame on the conveyor and the base frame

Figure 4. Determining the position of a point from its image using virtual rotation.

the conveyor. Assume that the position of the conveyor cane
be described by 8(¢), which is the angle between the x-axes of
the two coordinate frames. We measure the angle 6(f) by an
encoder sensor. Assume that the position of the centroid of a
part with respect to the rotating coordinate frame on the con-
veyor be represented by x, which we assume to have been
obtained from the virtual rotation algorithm already
described. The position x,(¢) of the part with respect to the
fixed coordinate frame is given by

xd(t) = Rz(e(t))xa (1)
where cosB(f) -sin®(t) 0
R,(6(¢))=|sin6(t) cose(r) 0
1

0 0 @

represents a rotational transformation around the z-axis.

The equations (1) and (2) reflect how the absolute position
information x,{¢) is obtained through fusing the relative posi-
tion information x, together with the encoder measurement
0(f). Similar transformation can be obtained for the orienta-
tion matrix as well. Differentiating both sides of (1) yields

) = QOIR.(O), @)
where Q(é) can be easily calculated. Equation (3) shows that
the velocity of a part on the conveyor can be obtained by fus-
ing relative information x, with encoder measurement (¢)
and 6(f), the speed of rotation of the conveyor. In fact the
speed can also be measured or estimated by the encoder.

Because the relative position of a part with respect to the
conveyor has been assumed not to change with time, the
absolute position, orientation and velocity of the part are updat-
ed at the same rate the encoder measurements are taken. In
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on the robot, we need to describe a set of points in
both frames since the two frames are related by

oP = 'R, P + 4T,

where 2P and 9P are the coordinates of a point in the base
frame on the robot and the stationary frame on the conveyor,
respectively. Since the plane of the conveyor and the base
plane of the robot are assumed to be parallel, it is readily seen
that there is just one unknown in the rotation matrix °%,. Of
course, additionally there is a set of three unknowns in the
translational vector *T,. Thus every feature point on the end
effector provides a set of three equations in four unknowns.
The equations can be readily written once the coordinates 2P
and “P are known. Fortunately, from reading encoders of the
robot, the coordinates 2P of points on the end-effector with
respect to the base frame of the robot can be obtained. We
now describe a procedure to calculate 4P using the vision sys-
tem and applying once again the virtual rotation algorithm.
Note, however, that we need at least a set of two points to
obtain the four unknown parameters uniquely.

Since the feature point on the end effector is visible by the
camera, we can use virtual rotation algorithm to localize the fea-
ture point up to a line, i.e., the coordinates of the point are
obtained as a function of the height of the point from the convey-
or plane. If we assume that this height is known, or equivalently
if we assume that the distance between thé conveyor plane and
the base plane of the robot is known (recall that they are already
parallel, by assumption), then 4P is readily computed.

If, on the other hand, we assume that the distance between
the conveyor plane and the base plane of the robot is
unknown a priori although we continue to assume that they
are parallel, then this distance has to be estimated. This prob-
lem is much harder, compared to, for example the computa-
tion of height of a feature point on the rotating part, because
the height of a feature point on the end-effector does not
remain fixed as the end-effector moves. Thus, an algorithm
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using repeated application of the 1

virtual rotation, cannot be used
in this case. We therefore pro-
pose a new algorithm. This algo-
rithm can be implemented, in
. particular, using two or three
feature points. In what follows,

05 kE.

X Direction (Meter)
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we shall describe the case with 0 10
" two points.
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effector (with respect to the 0.42
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camera frame) with associated
coordinates on the image plane of
the camera given by (X,, ¥;) where
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that the z-coordinates of the two 0 10
points can be measured in the

c¢. Time (Second)
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d. Time (Second)

base frame coordinates of the
robot and so is their difference d.
After virtually rotating the cam-
era, the difference between the z-coordinates of the two points
has the same magnitude in each of the camera frame and the
base frame. Without any loss of generality we therefore assume
that z; - z, = d is known from the robot encoders. Likewise, we
assume that the distance s between the two points on the end-
effector can be measured in the robot base frame and contin-
ues to be same in the camera frame. We therefore obtain the
following quadratic equation:

conveyor is unknown.

X Xom P Vi Y e 2, = 52 )

which can be solved for z, for a pair of solutions. In practice,
the problem itself guarantees that one real solution exists.
Hence, the quadratic equation of z, must have two real solu-
tions. However, in many cases we can recover z; uniquely
since the point should be in front of the camera, i.e., 2, > 0.

The algorithm can be repeated with three feature points,
pairwise. Analogously, in this case, we obtain a triplet of qua-
dratic equations which, in general, would have an unique solu-
tion, common to all the three equations. The relation between
the base frame of the robot and the fixed frame on the convey-
or can be easily computed and the details are omitted.

ROBOT PLANNING AND CONTROL

In this section, we divert our attention to the control problem
which is of independent interest. The task considered is to
control the end effector so that it is able to track a moving part
on the rotating conveyor. The tracking controller should be
robust with respect to positional inaccuracies of the end effec-
tor and is synthesized by using the concept of parallel guid-
ance. This involves moving the end effector synchronously
with the rotating part at a given fixed distance and gradually
reducing the distance to zero. The controller is actuated by the
error between the position and orientation of the end effector
and the part. Unfortunately however, the true error signal, if
used, would lead to actuator saturation. Hence the error signal
is carefully planned and modified by the motion planner. An
error reduction term is added to the position and velocity of
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Figure 5. Estimated and actual pose of the part for the case where the distance of the end-effector from the

the target to form a modified desired position, velocity and
acceleration profile for the robot. When the error reduction
term is carefully planned, it guarantees a time optimal and
robust robot motion with a prescribed bounded control. The
planner, we show, can be implemented in both #ime based and
event based. In particular, our approach leads to a new event
based tracking scheme for the robot. We would like to refer to
[81], [9] for details of the structure of the event based controller
particularly the structure of the motion reference module (see
Figure 1). The vector (m,n,p) is the direction vector that the
end effector needs to follow to approach the part on the con-
veyor and the parameter s is the event base with respect to
which the control signals are computed and implemented.

Robot Control
The dynamic model of a robot arm is given by

D(giy +Clg, q) + Glg) =1 (5)

where ¢, D(g), Clq, 9), G(q) and T are respectively the joint
angle vector, the inertia matrix, the load related to centripetal
and Coriolis forces, the load related to gravity, and the joint
torque vector. The joint torque has to satisfy the following con-
straints

Ti,min(q:q)STi STi.max(q:q) i=12,.m (6)

where m is the number of joints. The output is given by ¥ =
H(g) = (X,8) where Xe®R* and 0eR’ represent the posi-
tion and orientation of robot end-effector. Let us consider the
nonlinear feedback control law given by

1 = D@V QAAKVY )+K (YY) Hg)g)+Clg,6)+Glg) (7)
where J(g) is the Jacobian of H(g) with respect to ¢; X, and K,
are gain parameters for velocity and position, respectively. It
is assumed that the robot has six joints. It can be shown that

if A, V; and Y, satisfy the constraints Y; = V; and V,; = 4,, then
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by proper choice of K, and K, the closed-loop system is stable
and the tracking error will vanish asymptotically provided the
induced joint torque is within the limit specified by (6). The
problem of robot motion planning considered here is to
design 4,, V, and Y, so that the robot end effector would track
the motion of a part.

satisfies the constraints “Vp u SUm and “A,,“ £a,, . 1t follows
from (8) that a conservative constraint on the error-reduction
term planned error would be <a,-a,, and \Y.|<a,-a

Y,

g p -
It is now reasonable to assume v,,<v,, and a,,,<v,,, in order for
the robot to be able to keep track of the target.

In our experiments, the control has been implemented

Robot Tracking with —
Planned Error Reduction :
The main problem in robot
tracking is to eliminate the
position and velocity error
between the robot end effector
and the part by controlling the

X Direction (Meter)

0.5 ———
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robot. An obvious tracking 0 16
plan would be to choose

a. Time (Second)

20 30 0 10 20 30
b. Time (Second)

Y=Y, (0), V= V(t), Ay =V,

0.395 . .

which is to let the desired
motion be the motion of the
part. However, if such a plan is
used to control the motion of 04

Z Direction (Meter)

100 b0 P, G,

the robot, the required control 0 10
will be large when the initial

c. Time (Second)

Ori. in XY-Plane (Degree)

20 30 0 10 20 30
d. Time (Second)

error in position, orientation
and velocity between the part
and the robot is large. A large
value of the position error can easily cause the command
torque to exceed the upper limit and force the lower level
controller to shut down. In order to circumvent the problem
of dealing with a large value of the initial error, a new track-
ing plan is proposed in the form of

8)

where Y, is an error reduction term that is set to Y(0)-Y,(0) at
the time tracking starts and is gradually reduced to zero
according to a plan. The proposed plan is based on optimal
control, [12] and controls the robot to move at the same
speed of the part while the position error is gradually reduced
to zero according to an error reduction plan.

After the error reduction term is added to the target posi-
tion, the initial positional error is set to be zero to guarantee
that the control will not be out of range while tracking
starts. The error reduction term would be planned so that
the initial positional error would be reduced with a feasible
control command.

The torque demand of a planned motion depends on the
planned path, speed and acceleration and is usually difficult to
meet. An often adopted method for motion planning is to
specify a conservative constant speed and acceleration limit
based on the off line kinematics and dynamic workspace
analysis. Let us assume that the constraints on the desired
motion are given by [Vill<v, and [Ad<a, . We also
assume from prior knowledge that the motion of the target
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Figure 6. Estimated and actual pose of the part for the case where the distance of the end-effector from the convey-
or is knoun and height of the part is 4 cm.

both in time-base and in event-base. The details on the imple-
mentation has been omitted (see [9] and [10]). We would also
refer to [11] for some general introduction to event based
control. To summarize the main contribution of this section,
we have implemented a dynamic tracking controller with a
feedback to the motion planner. The overall closed loop sys-
tem is stable and robust.

EXPERIMENTAL RESULTS

Our experimental set up is now described. The manipulator is
one of the two PUMA 560 robotic manipulators separately
controlled by two UMC controllers from Motion Tek. The two
controllers interface with the main computer, a four proces-
sor SGI IRIS 4D/VGX work-station, through shared memory.
High level planning and control algorithms such as the multi-
ple sensor integration algorithm, the vision algorithm with an
implicit calibration and the parallel tracking algorithm dis-
cussed in this paper are all implemented on SGI work-station,
making full utilization of its computing power. Schunk grip-
pers are mounted on the manipulators to grasp parts to be
manipulated. The conveyor rotates around a fixed axis. There
is an encoder attached to the motor to generate measurement
of the angle and speed of rotation of the conveyor. The resolu-
tion of the encoder is (576x103)/2x lines per radian. The rota-
tion of the conveyor is independently controlled by a spare
channel on one of the Motion Tek controllers. Two markers
are placed on the conveyor with one of them at the center of
rotation. These two markers represent the x axis of the
attached coordinate frame. They are identified as reference
points by vision algorithm in determining the relative posi-
tion and orientation of a part placed on the conveyor. The
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manipulate parts in a typical manufacturing
workcell that is composed of a robot manipula-
tor, a rotating conveyor and a camera system.
Even though the visual computations are per-
formed in low rate, part position and orientation
information can still be updated at the rate of
the feedback loop using an additional encoder
sensor. We also demonstrate a practical tracking
algorithm which pays attention to the fact that
30 | the torque that the robot control system can
supply is bounded. The proposed algorithm is

5 X 10° primarily based on error feedback with an extra
— error reduction term added in order to force the

T o g required torque requirement to remain within
= ] acceptable bounds. The proposed control
< 2r = scheme has been implemented in both time and
fg 4t 90 event base.
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