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A PERSPECTIVE THEORY FOR MOTION AND SHAPE
ESTIMATION IN MACHINE VISION*

B. K. GHOSH! AND E. P. LOUCKS!

Abstract. In this paper, we consider the problem of motion and shape estimation of a moving
body with the aid of a monocular camera. We show that the estimation problem reduces to a
specific parameter estimation of a perspective dynamical system. Surprisingly, the above reduction
is independent of whether the data measured is the brightness pattern which the object produces
on the image plane or whether the data observed are points, lines, or curves on the image plane
produced as a result of discontinuities in the brightness pattern. Many cases of the perspective
parameter estimation problem have been analyzed in this paper. These cases include a fairly complete
analysis of a planar textured surface undergoing a rigid flow and an affine flow. These two cases have
been analyzed for orthographic, pseudo-orthographic, and image-centered projections. The basic
procedure introduced for parameter estimation is to subdivide the problem into two modules, one
for “spatial averaging” and the other for “time averaging.” The estimation procedure is carried out
with the aid of a new “realization theory for perspective systems” introduced for systems described
in discrete time and in continuous time. Finally, much of our analysis has been substantiated by
computer simulation of specific algorithms developed in order to explicitly compute the parameters.
Detailed simulation that would answer the perspective realizability question is a subject of future
research.

Key words. perspective, vision, parameter identification

AMS subject classifications. 93B30, 93C10, 93C15, 93C60

1. Introduction. The problem that we consider in this paper is described as
follows.

PROBLEM 1. We have a textured surface which is moving in continuous time
following a certain vector field where we assume that both the shape of the surface and
the vector field are unknown. Assume that a camera produces a perfect image of the
textured surface in continuous time. The problem of interest is to estimate the shape
and motion parameters of the surface from the observed time-varying image produced
by the camera.

Two important assumptions regarding the surface being observed, the camera,
and its imaging mechanism need to be emphasized. First, we assume that the surface
is constantly under focus, i.e., there is no blurring of the image as a result of imperfect
focusing. Second, we assume that the photometric effects on the image due to the light
source and the physical properties of the surface are negligible and can be ignored.
Thus, the process of image formation is such that the intensity corresponding to each
pixel on the surface is transferred to the image plane unattenuated via the projection
process.

The existing approaches to the estimation problem in the literature can be divided
broadly into two categories depending upon what is assumed to be measured from the
scene. If the data observed is assumed to be the brightness pattern which the object
produces on the image plane, a well-known approach in the literature is based on
analyzing the optical flow field (see [1], [32], [33]). For a system theoretic treatment
[2] of the subject we refer the reader to [47]). On the other hand, if the data observed
are assumed to be the discontinuity curves in the brightness pattern on the image

* Received by the editors April 2, 1993; accepted for publication (in revised form) May 6, 1994.
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espondence of various

plane, a well-known feature-based approach is to identify the corr
and curves between one frame and the next (see [3]-[6].
[8]. [10], [12]. {13}, [40]). The former approach assumes that the image intensity is a
on to the smooth part of the image plane only.
wise smooth function
erein the image intensity

features such as points, lines,
I,
smooth function and restricts attentl
The latter approach assumes that the image intensity is a piece
and restricts attention to the region of the image plane wh
is separated by a discontinuity curve. Of course for each of the two approaches. there
are various projection models that one might want to consider. The two projection
s well known in the literature are called “orthographic™ and “perspective.”
There are also other projection models (see [11]) that generalize orthographic
and perspective projections. They are described as “image centered projection” and
~viewer-centered projection.” There are still other projection models in the literature
48] not considered in this paper. In this paper, we consider a model of projection (see
equation (3.1)) that generalizes the various projection models considered in the liter-
ature. The generalized projection degenerates to orthographic, pseudo-orthographic,
and perspective projection under various limiting cases. The corresponding estimates
and these have been studied in detail in this pa-
tribution of this paper, we survey some of the

model

of the parameters also degenerate
per. Before we describe the main con

important contributions in the field of motion parameter estimation.

The problem of estimating the motion parameters in computer vision has a long

history, initiated by the early works of Ullman [9]. The problem was tested subse-
quently with real images by Roach and Aggarwal [16]. Finally Nagel [17] reduced the
problem to solving a single nonlinear equation. A fairly complete analvtical solution
for eight feature points was given independently by Longuet-Higgins (18] and Tsai

and Huang [21]. Zhuang (23], [24] proposed a simplified eight-point algorithm and

On the question of uniqueness. Netravali et. al. [25]

called the homotopy method and showed the exis-

tence of 10 solutions. Using projective geometry. Faugeras and Maybank [7] showed

that at most 10 solutions can be obtained from 5 feature points. Using the quaternion

representation of three-dimesnional (3-D) rotation. Jerian and Jain [26] reduced the
problem to solving the resultant of degree 16 of a pair of polynomials of degree 4 in
9 variables. Jerian and Jain [27] also compared known algorithms exhaustively and
compared their performances with noisy data.

Many algorithms in the literature are known to perform poorly under noisy data.
A robust algorithm was introduced by Weng. Huang, and Ahuja [28] and by Spet-
sakis and Aloimonos [14], {15]. They used optimization-based methods to compute
“epipolar equations.” Grzywacz and Hildreth {29] have also indicated that the effects
of image noise on reconstruction from image velocities are severe in some cases. Jerian
and Jain [26] and Murray and Buxton [30] proposed various schemes toward a stable
reconstruction algorithm. The particular estimation problem has been summarized in
two books by Maybank [31] and by Kanatani [11]. In fact, one of the reconstruction
algorithms described in this paper has been initiated by Kanatani (11]. For some
other related books and references we refer the reader to [39]. [41]. [45], [42]. [43].

In this paper. we consider in detail the problem of estimating motion and shape
parameters of a planar surface undergoing an affine motion. The proposed affine mo-
tion generalizes the rigid motion already considered in the literature (see [3]. [17].
[19]-[22]). While preserving the shape of the surface being observed, an affine motion
adequately models many other nonrigid deformations. We also consider a general-
ized projection which includes as a special case both “iage-centered projection”

discussed the uniqueness issue.
introduced a numerical technique
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IDM: Intensity Dynamic Module
SDM: Shape Dynamic Module

Fic. 1.1. A two-module approach to parameter identification.

and “viewer-centered projection,” together with orthographic and perspective projec-
tions. Finally, we consider both the “optical flow analysis” (see [6], [32], [33]) and the
“feature-based analysis” (see [35], [34], [44], [46], [40]) and show as the main contri-
bution of this paper that irrespective of what is assumed to be the nature of the data
observed (within the class of data considered), and regardless of what is assumed to
be the projection model (within the chosen class of models), the problem of motion
and shape estimation for a moving textured surface can always be analyzed as a spe-
cific parameter estimation problem of a perspective system. The specific form of the
perspective system depends on how the surface and the motion field have been param-
eterized. It may be recalled that perspective systems have already been introduced
in [36] in order to study feature-based estimation of motion parameters. Roughly
speaking, a perspective system is a linear system with a homogeneous observation
function (see [36]).

The details about the estimation scheme proposed in this paper are explained
as follows. As shown in Fig. 1.1, the estimation problem is broken up into two
modules, known as the Intensity Dynamic Module (IDM) and the Shape Dynamic
Module (SDM). Data from the observed surface are first processed in the IDM in
order to estimate a set of “essential parameters.” Effectively, IDM performs a “spatial
averaging” throughout the entire image plane from either the observed sequence of
features or the optical flow data.

The essential parameters are functions of motion and shape parameters. The
shape-dynamic module views them as an observation function corresponding to the
“shape dynamics” introduced in this paper. The shape-dynamical system together
with the essential parameters (viewed as an output) can be regarded as an example of
a perspective system introduced in [36]. By observing the essential parameters over
time, the SDM obtains an estimate of the motion and shape parameters.

Thus, via a dynamical systems approach, we characterize a complete set of identi-
fiable parameters or functions of parameters for a planar surface undergoing an affine
motion. Such a characterization is done both for a generalized projection (3.1) and
for an orthographic projection (3.2). As a special case we consider the case when the
motion is restricted to a rigid flow and recover many known results in the literature.-

In summary, this paper introduces a new unified treatment of the estimation
problem.

2. Shape dynamics of a surface patch. We assume throughout this paper
that we have a textured surface patch which faces a camera without any occlusion.
Futhermore, we assume that every point on the surface moves according to a certain
differential equation. As a result of the motion of the individual points, the shape of
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the surface undergoes deformation while the surface moves in time. In this section.
we write down a differential equation that describes the motion of the surface. We
also specialize the equation to a planar surface patch undergoing affine motion and
subsequently to a planar surface patch undergoing rigid motion.

Let us assume that (X.Y. Z) is the world coordinate frame wherein we have a

surface defined by the equation
(2.1) 7 = S(X.,Y,t).

so that its derivatives with respect to each of

We assume that S is smooth enough
We now assume that the motion field is given

the variables are defined everywhere.
by the equation

(2.2) X = f(X.Y.Z), ¥V =g(X.Y.Z), 7 =h(X,Y.2).
We now describe how the surface (2.1) moves as points on the surface move following
the motion field (2.2). This is given by

as

C0S o w0S

(2.3)

The equation (2.3) is a quasilinear partial differential equation and is called the “shape

dynamics.” We consider the initial condition

(2.4) S(X,Y,0) = o(X,Y).

The pair (2.3). (2.4) constitutes an example of a Riccati partial differential equation
ntroduced in [38]. In this paper, we shall assume that the surface (2.1) is a plane
described as

(2.5) Z =pX +qY +,

where p. ¢.r are shape parameters that are changing in time as a result of the motion
field (2.2). Furthermore we shall also assume that the motion field (2.2) is affine and

is given by

(2.6) X = AX + b,
where
(2,7) A= [aij], b= C()l[bl., bg, b3]

atrix and a 3 x 1 vector and where X =col[X,Y. Z]. Thusin

are respectively a 3% 3m
deformation as a result of

this paper, we do not assumne that the shape undergoes any
the motion field. We now construct a differential equation that describes the motion
of the shape parameters p.g,7. This is done as follows. Let us homogenize the vector
(X,Y,Z)as X = X/W.Y = Y/W,Z = Z /W and the vector (p,q.7) as

(28) p=p/s, a=a/s. T=T/5

Il

We rewrite (2.5) as (ﬁ, q. -5, f)/\" 0 and (2.6) as ¥ = - ATX where
7. W

¥=(X. Y. Z w )" and

(2.9) —AT:(B‘ g)

A
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It follows that

(2.10) )7

-(;—]t (po @ -5 #) =A(p ¢ -5 &
where A is the 4 x 4 matrix in (2.9) and is defined up to addition by a scalar multiple
of the identity matrix. If we assume initial condition to be 5(0) = 1. p0) = p(0).
g(0) = ¢(0), 7(0) = r(0). it may be concluded that the dynamical system (2.10)
describes the motion of the shape parameters p. ¢. r. In fact. from (2.8) and (2.10)
the dynamics of p, ¢, r can be written as the following Riccati equation:

p=(agy — ay)p — asq + ag; — “13[)2 — Q23pq,
(2.11) G = (agy ~ az)q — appp + azz — a;pq — arzq°.
I= —(ass + @239 + ayzp)r + (b — bag — byp).

In general. Riceati equation (2.3) or (2.11) propagates in time the relationship between
coordinates X. Y. and Z expressed via the surface (2.1) or the plane (2.5). Note that
the equation (2.11) is parameterized by 12 motion parameters and 3 initial conditions
on shape parameters. Thus there is a total of 15 parameters describing the shape
dynamics (2.10) for the affine motion.

An important special case of the affine motion (2.6) is the case when A4 is a skew
symmetric matrix given by

0 W) wo A
(212> ~ W1 () &3 /: Q
—Wo Ty 0

Under this assumption. the motion field (2.6) describes a rigid motion. The shape
dynamics (2.10) can be written as

p D
d g Q 0 q
2.1: — = .
(2.13) dat | —3 < -bT 0 ) -5
F 7
Note that the shape dynamics (2.11) reduces to p = —wu(1 + p°) + wiq - WPy,
G = —~w3(l +¢%) —wip — wopg, and § = by — byp — bag — r{wsq + wap) which is

parameterized by a total of six motion parameters and three initial conditions on
shape parameters. Thus there is a total of nine parameters describing the shape
dynamics (2.13) for the rigid motion.

3. Intensity dynamics of a moving textured surface. Assume that the sur-
face described by (2.1) is textured, i.e.. the intensity E(X,Y, Z.t) of a point (X.Y. Z)
on the surface at time ¢ does not change along the integral curves of (2.2). We also
assume that the camera is perfectly focused on the object surface, i.e.. intensity from
a surface on the object to the image plane is transferred unattenuated under the cam-
era correspondence. The above two assumptions together imply that the intensity on
the image plane does not change along the projection of the integral curves of (2.2).
In this paper we consider the projection to be described as follows.

Let (., y) be the coordinates of the image plane obtained under the projection of
a point (X, Y, Z} on the surface of the ochject. We define

X _ Y
TZzie VT zas

(3.1)
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where 6 € [0. f] and f is the focal length of the camera. Note that if = 0 we obtain
a viewer-centered projection. If 6 = f we obtain an image-centered projection. These
two projections have been described in [11]. Finally note that if &6 = fand f — oc
we obtain

(3.2) r=X, y=Y

which is known in the literature [11] as the “orthographic projection.”

In an orthographic projection. a point (X,Y. Z) is projected by dropping the Z
coordinate information. In order to motivate the image-centered and viewer-centered
projections. assume that the image plane is perpendicular to the Z axis and passes
through the point Z = a. Assume that the optical axis is the Z axis and a point
(X.Y.Z) is projected onto the image plane via the center of the camera located at
7 = —Zy. In order to derive the projected point. one computes the line | passing
through the points (X,Y,Z) and (0,0, —Z,) and computes the intersection of { with
the image plane. The projection of the point (X.Y. Z) is this intersection. If the center
of the camera is the origin of the coordinate axis. i.e., if Zg = 0, we obtain a viewer-
centered projection. On the other hand, if we assume that the image plane passes
through the origin of the coordinate axis, i.e., if @ = 0, we obtain an image-centered
projection.

For a given fixed value of f, 6 we have a new set of coordinates (x,y. Z). We now
rewrite the shape equation (2.1) and the restriction of the motion field (2.2) on the
image plane in the new set of coordinates as

(3.3) Z = S(x,y.t)
and
(3.4) &= flz.y, S(x,y.1), §=dlx.y, S(x.y.1))

for some suitable functions S, f, g.

The integral curves of (3.4) are exactly the projection of the integral curves of the
motion field under the generalized projection (3.1). The vector field described by (3.4)
has been described in the literature (see Horn [1]) as “optical flow.” Note in particular
that the optical flow is in general a time-varying dynamical system described via the
coordinates of the image plane. The time variation of the optical flow is a result of
the motion of the surface (2.1), or equivalently (3.3).

Let e(r.y.t) be the intensity of a point (z.y) on the image plane at time instant
t. Since e(z,y.t) does not change along the integral curves of (3.4), it follows that
e(z,y, t) satisfies the partial differential equation given by

, de = ], Oe % de

3.5 = ' Jy i) — +glx,y, S(z.y. t)) 5 =0.

(3.5) g T f@y Sy )5, Tty Sy )>0y

We shall call the dynamical system (3.5) as “intensity dynamics.” Let us now assume
that the initial condition is given by

(3.6) e(z,y.0) = ¥(z,y).

We shall call the function ¥(x,y) the “texture function.” The above pair (3.5), (3.6)
is a linear partial differential equation, which describes the dynamics of the intensity
function on the image plane.

S

o d

b
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Let us now restrict our attention to a planar surface (2.5) with affine motion (2.6) t
and assume a generalized projection (3.1). The “optical flow” equation for this special t

case can be written as follows:
. 1 9 ‘
T = d] + d3$ + d4y + ? (d7l‘ + dg.l,’l/) 5

1
g =dy + dgy + dsz + 7 (dsy® + drzy) ,

dy = fla1z + c1),da = f(azs + ¢2),d3 = (a1 — asz) — (c3 + pcy),
(3-8) dy = a12 — qe1,ds = asy — pea,

de = (@22 — as3) — (c3 + qc2).d7 = pcg — a3y, dg = gz — az2
and where
(39) C; = (bz —aigé)/(T+5),i: 1,2,3‘

Various limits of the optical flow equation have been considered in the literature.
They all pertain to analyzing what happens when f tends to oc, assuming f = é. In
the process of taking the limit, one would approximate the coefficients of the optical
flow equation (3.7) up to order %, while neglecting the higher-order terms. If we define

(3.10) By = lim dy; j =128

we obtain the following:

hy = aiar + b1, ho = agsr + by,
(3.11) hs = a1y + ai3p, ha = a12 + a134,

hs = a1 + a23p, he = a2z + az3q.

hy = —a31 — as3p, hs = —az2 — azsq.

Thus when f — oc and f = é, the optical flow equation can be approximated up to
order % by

1
(3.12) T =hy + hgx+ hgy+ }-(hmg + hgxy), v

1
§ = hy + hst + hey + ?(hng + hrxy).

Of course if the focal length of the camera is fixed at oo, one observes the optical flow
equation as

(313) L = hy + hsx + hyy,y = ho + hsz + hgy.

The projection which produces the optical flow given by (3.13) is known as “ortho- ’
graphic projection.” Such a projection described by (3.2) does not give any information

about the quadratic component d7 and dg of the optical flow (3.7) in general. The '

optical flow equation (3.12), on the other hand, is an approximation of (3.7) up to

order % assuming f is approaching oo. Thus if the focal length of a camera can i
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be varied, one can obtain the asymptotic values of d7 and dg for large f and use
this information to compute h; and hs. We shall cail (3.12) the optical flow under
“orthographic approximation,” as opposed to (3.13), which is the optical flow under
“orthographic projection.”

We also introduce a “pseudo-orthographic approximation” of (3.7) originally in-
troduced by Kanatani [11]. This is described as follows:

1
=d; +dsx + dyy + ‘f (h7l‘2 + hg.’Ey) .

(3.14) 1
Y= do + dey + dsz + = <h8y2 + h71‘y) .

f
“Orthographic approximation” and “pseudo-orthographic approximation” to the op-
tical flow equation (3.7) is useful in the process of reconstructing the motion and
shape parameters from the coefficients of the optical flow equation. The reconstruc-
tion algorithm has been described in §5 using an approach described by Kanatani
[11].

4. Estimation of essential parameters based on intensity and feature
measurements. Assume as in §3 that we have a moving textured plane which pro-
duces a time-varying intensity profile on the image plane. In this section we consider
the intensity dynamic module problem described as follows.

PrOBLEM 2 (intensity dynamic module problem). Assume that the intensity
function e(x,y,t) is measured in a given region of the image plane over a given interval
of time. The problem is to estimate the vector (di,...,ds) from this data.

In subsequent sections, we shall see that the vector (dy,....ds) is of paramount
importance in estimating the motion and shape parameters. For this reason we shall
call the vector (dy,...,ds) the “vector of essential parameters.”

4.1. Estimation based on intensity measurements. Assume that the inten-
sity function is smooth so that all its partial derivatives exist and can be computed.
If the motion field is affine given by (2.6), it follows from (3.5), (3.7) that the intensity
dynamics is given by

Jde

de
O ¢ oy

Oe

4.1
where e(z,y,t) is the observed intensity function on the image plane and

1 .
F(z,y)=di +d3z +dsy + 7 (d7x2 + dszy) ,
(4.2) f
G(z,y) = d2 + dey + dsz + 7 (dsy® + drxy) -

The parameters di,. . .,ds can be defined from (3.8). Combining (4.1) and (4.2), we
now write

Oe

4. Ty = -2,
(4.3) v 5
where

——

|

- 1
(44) 177 = <€I7 e‘y7 L€z, YCa, Ieyﬂ yey7 ? (wQC.T + -Tyey) 5
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and
(4.5) d=(dy, ... ds)".

In order to compute an estimate of the coefficient vector d, we proceed as follows.
Choose n > & points on the image plane denoted by (z;,y;),7 = 1,...,n. From the
observed data e(x,y.t) we now form the matrices

(4.6) V= (v(xr.y) vlra,ye) - o o v(Ta.ym))

and

(4.7) u=(—ezip) —erleays) - . . —elaiyn))’

From (4.3) it follows that V7d = u. If the points (x;,y;) are chosen in such a way

that rank V = 8, we compute
(4.8) d=(vvT~tvy

as an estimate of d. We therefore have the following theorem.

THEOREM 4.1. Assume that the function e{x,y,t) is such that all its partial
derivatives are avatlable and can be measured. Assume furthermore that the points
(ri y),i=1,..., n are such that rank V.= 8, where V' is given by (4.6). It is possible
to obtain a unique estimate of d.

4.2. Estimation based on feature measurements: Curve correspon-
dence. By the word “feature” we shall mean points or curves of discontinuity for
the intensity function e(z.y.t). We shall assume that, via edge detection. these fea-
tures can be observed in real time. We shall assume that the moving textured surface
produces a time-varying intensity function on the screen. The moving intensity func-
tion in turn would make the features move on the screen. The dynamical system
which describes such a motion is called “feature dynamics.” The main result of this
section is to see that the coeflicients of the feature dynamics are exactly the essential
parameters introduced in (3.8). Thus under an appropriate technical condition. the
essential parameters can be estimated from the feature dynamics as well, as was the
case for intensity dynamics. In order to describe the feature dynamics we proceed as
follows.

Let
(4.9) y=TI(x,t)
be the curve along which the function e(x,y.t) is discontinuous. We want to study

how the feature curve (4.9) changes in time. Differentiating (4.9) with respect to time,
we obtain

. 0T, 0T
(4.10) Y= %I+E'
Recall that
&= F(z,y),
4.11 .
(4.11) vy =Gz, y).

S
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where F(z,y).G(z.y) are given in (4.2). It follows that

oI o1 T 5
== dy +dsz +dyI(zt) + S (dra” + dgaZ(z.t))

1 .
=ds +deI(x,t) +dsx + ? (ng(I, )2 + drxZ(x. t) .

The above equation (4.12) is referred to as the feature dynamics, which can be rewrit-
ten as

oz
41 Td=-—=,
(413) Td=-"2,
where d is defined as in (4.5) to be the vector of essential parameters. The vector oT
is given by
. 1, ., 1,
(4.14) o' = (T, -1,21, . 1T, —z, -1, ? (:IC'II - :rI) , } (—I“ + xIII) .
We now choose n > 8 points on the curve (4.9) denoted by (r;.y;).1 = 1....,8. As

in (4.6), (4.7) we construct the matrix V' and vector u and obtain an estimate dofd
given by (4.8), provided of course rank V' = 8.

In order for the matrix V to have rank 8, the curve (4.9) has to be of sufficiently
high order. In fact, if (4.9) is a polynomial, it cannot be of degree < 4. On the other
hand, if

(4.15) I(z.t) = ag +arz + asz® + azz® + agxtag #0

in order for rank V = 8, one must have
5 , 8
(416) as # 50,204.

Thus we have essentially proved the following theorem.

THEOREM 4.2. Assume that the observed feature is a polynomial discontinuity
curve (4.9) of degree 4 giwven by (4.15). It is possible to estimate d given by (4.8) iff
{4.16) is satisfied.

If the observed discontinuity curve is of degree < 4, we shall see that one needs
to observe a larger number of features in order for rank V' = 8. Two cases of interest
are when the observed feature is a line and when it is a point. These two subcases
are now considered.

4.3. Estimation based on line correspondence. Let
(4.17) y=ar+b

be the line along which the function e(z,y,t) is discontinuous. Assume furthermore
that the line (4.17) is generated as a result of a discontinuity in the texture of the
surface (2.5). We also assume that changes in @,y are given by (3.7). Thus, the
feature dynamics is given by (4.12) or (4.13) where

(4.18) %% =az+b
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and

(4.19) vl = <a. -1,ax,alax + b), —z, —(ax + b), - ;r —-;(a;r, + b)> .

The vector d of essential parameters (see (4.5)) satisfies the ordinary differential equa-
tion

—a 1 0 —ab 0 b 0 & a
4.2 ] = 7).
(4.20) (0 0 —a —a* 1 a % %)d <b>

If we assume that the motion of the line (4.17) is observed, we might infer that
in (4.20), a. b. a. b is observed. Thus (4.20) represents a pair of equations in eight
variables, the variables being the eight-parameter d vector. Choosing a set of four
lines on the surface being observed and assuming that these four lines define a set of
eight independent conditions on the d vector, one can obtain an unique estimate of
the d vector. The procedure is similar to that outlined in §4.1 and described by (4.8).
We now state the following theorem.

THEOREM 4.3. Assume that the observed feature is a set of four lines on the
wmage plane given by the equation

2

(4.21) y=a;x+b;, i=1...,4,

where the lines (4.21) are generated as a result of discontinuity in the texture of the
surface (2.5). Define

~a; 1 0 —ab, 0 b 0 &
(4.22) ;= ¢ * b ’,
0 0 —a; —a? 1 a 7’ a,f :

t=1,....4 and the 8 X 8 matriz ¢ = (c‘)lT o1 oF @{)T It 1is possible to estimate the

vector d uniquely given by

(4.23) CZ=(¢T®) T (a1 by ay by ag by ag by )T

off rank ¢ = 8.

4.4. Estimation based on point correspondence. If we assume that the
texture function is discontinuous at a single point, one would observe this point as a
discontinuity in the function e(z.y,t). Tracking the discontinuity in real time would
amount to tracking the projection of the feature point on the image plane. Thus we
rewrite the optical flow (3.7) as

2
10 0 0 £ ~
(4.24) vy ro d:(?)s
OlOOIy%’ yT y

where d is once again the vector of essential parameters given by (4.5). The point
(x.y) is the projection of the feature point on the image plane. Assuming that we are
able to observe .y, .y in real time, it follows that equation (4.24) represents a pair
of equations in eight variables, the variables being the eight-parameter d vector of
essential parameters. As in §4.3, if we choose a set of four feature points on the image
plane that are projections of points of discontinuity in the texture of the surface (2.5),
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‘ r 1 1,7\
= (vy vy ¥3 U1 )

(4.25)
is nonsingular, where
R
(4.26) Y = < o If Jz > .
01 0 0 =z ¥ ,fy_ “
i=1,2.3,4. It s possible to estimate the vector d uniquely gwen by
- 3 N . . . . . . . . T
(4.27) d=(eTe) T (A gty gs 4 U1 )
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5. Estimating motion and shape parameters
tion. In this section we shall assume that the essential pa
been estimated by the intensity dynamic module. The problem that we would like to

consider is to solve (3.8) for the motion and shape parameters. We would also like

to study how the solution degenerates for f =6 as f — %, i.e., when the projection
model degenerates to that produced by orthographic projection. Some portion of our

analysis in this section is an adaptation of earlier work due to Kanatani {1 1].
Ve assume that we have a planar

5.1. Estimation under general projection. V
surface (2.5) undergoing a rigid motion (2.13). The essential parameter vector d given

by (3.8) for this case is given as follows:

dy = flwz + 1), d2= flws +e2). d3= —(c3+per), da=wr e
dr = (w2 +pes), ds= (w3 + gcs).

(5.1) ds = —wy — PC2: dg = —(c3 + qea),

where
(52) a= by — W) /(1 +06), 2=

The problem that we consider is described as follows.
PROBLEM 3. Assume that we are given (di. - .dg). Using the algebraic equation

(5.1), (5.2), solve for the parameters €1, C2,C3: W
Tt may be noted that (5.1) describes exactly a set 0

eight parameters. This particular set of equations is known

The following result is quite surprising, however.
THEOREM 5.1. Assume c3 £ 0; then (5.1) can be solved for exactly two real

(by — w3b)/(r +8), €= bs/(r + 6)-

wo, w3, D, q-
f eight nonlinear equations in

as the “recovery equation.”

solutions. If

(5.3) (61,02«,("3«011&2&3,17»(1)
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is one solution, then the other solution is given by

(—cap. —caq, €3, wy — C1q+ cop. wa +c1+cap, ws + 2+ c3q, —cifcs, —cafcs).
(5.4)

It may be remarked that the existence of two solutions to the recovery equation
{5.1) and described by Theorem 5.1 has been reported earlier in the literature by
Waxman and Ullman [8] and by Kanatani [11]. In [8] the analytical steps leading
up to the two solutions have not been documented. In [11] the analytical formula
(5.4) of the two solutions has not been presented. The purpose of stating and proving
Theorem 5.1 is therefore tutorial.

Before we prove Theorem 5.1, we proceed to solve the set of equations (5.1). Let
us define

T =d3 + dg., R =d5 — dy, Up = dy + ida.
(5.5) o ‘ .
K = —(d7 +idg). S =d3—dg+i(dy+ds),
and
1
(5.6) P=p+ig, V=c +icy, W=wsg—iws, L=fK-~— ?UO.

The equations (5.1) can be written as

Uo = f(V +iW),
(5.7) S=-PV.L=c;P-V.
—iPV* = R+ 2w +i(T + 2¢3).

Note that (5.7) is a set of four equations in complex variables that needs to be solved.
From (5.7) we have

(5.8) V24 LV +e38 =0.

Solving (5.8) for V' and then using (5.7) for P we have

—L+VL?—4c3S
(5.9) V= : @2

L+ L?—4c¢3S
{5.10) p= =T VEI TGO

203

From (5.7) we have
(5.11) wy = [Im(PV™*) — R]/2,
(5.12) T + 2c3 = —Re(PV™).

From (5.9) and (5.10) we have

L + TTF 365 (L7 — 4esS)°

(5.13) Re(PV*™) = o
-3

Combining (5.12) and (5.13) we have

(5.14) IL? — 4Tes - 863 = \/|LI* + 163|S|? — &caRe(L2S").
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Note that (5.14) as an equation in ¢3 has two solutions. One solution is at ¢z = 0 and
the other solution is at ¢3 = ¢4. Squaring (5.14) on both sides. we conclude that ¢5 is
the middle root of the cubic equation

(5.15) A+ T2+ (T~ |LI* = |5 )es + é(Re(LQS*) ~T|L?) =0

1
4
Using c5. one can solve for a pair of solutions for P and V' from (5.9) and (5.10).
Finally, from (5.7) we have

(5.16) W =i (v - }U())

and from (5.11) one can solve for wy. Thus the set of equations (5.7) can be solved
for exactly two distinct solutions if ¢5 # 0. If (5.1) is solved, these are exactly the two
solutions that one would obtain.

Proof of Theorem 5.1. It can be easily checked that if (5.3) is one solution of
(5.1), then the other solution is given by (5.4). However, since {(5.1) has exactly two
solutions, these are the only solutions. Moreover the solutions are obtained by solving
the cubic polynomial equation (5.15) outlined as above.

From the two solutions to the recovery equation (5.7), it is easy to see what

happens when f - oc. Note that

(5.17) IET;C ] = —wa, fl_iigc o = —ws, flirlgc c3 =0.

It follows that one of the two solutions (ci. ¢2. €3, w1, wa,ws, p. ¢) approaches the vector
(5.18) (—wa, —ws, 0. wi, wa. w3, P, q),

the first six components of the other solution approach the vector

(5.19) (0, 0, 0, w1 + wa2g —wsp, 0, 0)

and the last two components of the other solution approach oo asymptotically along
the line

(5.20) p/q=w2/ws.

The parameters by, b, bs, r are never recovered exactly. In fact, from the definition of
dy.ds. c3 we have, for a given f. the straight line

(5.21) woT + b1 = (] + 77) dl, ws3r + bQ = (1 + %) dg, b3 = (?3(7‘ + f)

described in the (by, ba, b3, 1) space corresponding to the solution (1. ¢, €3, W1, wa, w3,
p.q). On the other hand, corresponding to the other solution we have the straight

<1+ ?) dy.
e

c3(r + f).

line

(wg + 1 + czp)r + by
(5.22)

il

(w3 + co + c3q)r + bo
bs
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As f — oo, the straight line (5.21) tends to the straight line
(523) wor + by = hy,wsr + by = ha, by = b§

where b} is an arbitrary constant. To see (5.23) we need the following lemma.
LEMMA 5.2. In the (bs,r) space the straight line by = ca(r + f) converges to the
line by = b5 as f — oo, where b3 is an arbitrary constant.
Proof. Recall that d3 = —c3 — pcy, l.e.,

(5.24) (d3 + per)r + bz = —(ds + per) f.

As f — oo, we have (d3 + pcy) — 0 and (bs + (ds + pc1)f) — 0. At a given f, the
line (5.24) passes through the point (0, —f) and (—(ds3 + pc1)f,0). For large f, the
line passes closely through the points (0, —f) and (b3, 0) where b} is a fixed constant,
which is also the true value of b3. Thus as f — oc the line (5.24) approaches the line
bs = b3. 0

The above calculation can be summarized via the following theorem.

THEOREM 5.3. Consider the solution wvector (wi,ws,ws,p,q) for the recovery
equation (5.7). For a given fixed f there are exactly two solutions, one of which
remains unchanged as f — oo and the other of which goes off to infinity as described
by (5.19), (5.20). For the parameter vector (by, ba, by, 1), the Tecovery equation specifies
these parameters up to a choice of two straight lines (5.21) and (5.22). The line (5.21)
corresponds to the parameter vector (wi,ws,ws, p,q), which does not change with f.
Moreover as f — oo, the line (5.21) changes with f and approaches the limit (5.23).

Remark. It follows from Theorem 5.3 that for large f one recovers (b1, bo,7) up
to a line given by (5.23) and b3 exactly.

5.2. Estimation under pseudo-orthographic approximation. Under the
pseudo-orthographic approximation, the equation we need to solve for instead of (5.1)
is given by

di = flwp +c1), dp=flws+ep), dyg=—(ez+pecr), di=uw —gey,

5.25
( )ds = —wi —pea, dg = —(c3+ gea), h7 = wo, hg = ws.

Let us define T, R, Up, S as in (5.5) and replace K by K, given by K| = % (hz +ihg).
Furthermore let us define P,V,W as in (5.6) and replace L by Ly given by L; =
FK, —%Uo. The recovery equation (5.25) can be written as Uy = f(V+iW), S = —PV,
Ly = -V,and —iPV* = (R+2w;) + (T + 2¢3), which can be easily solved (see [11])
and the solution is given by

V= _Llﬂ
P= S/Li,

(5.26) wi = —[Im(SL:/L)+ R]/2,
W= i(v-2t).

The following theorem describes an important property of the pseudo-orthographic
approximation.

THEOREM 5.4. The solution (5.26) of the pseudo-orthographic approzimation,
converges as f — oo to one of the solution of the recovery equation (5.7), described by
(5.9), (5.10), (5.11), and (5.16). The solution to which (5.26) converges to is exactly
the one which does not change with f.
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Proof of Theorem 5.4. It s easy to see from (5.9), (5.10) that

. —-L — v L2 — 4(735
lim - = —L,

c3—0 2

_ JIZ " 4c3S
E__g_c_icﬁ:S/L‘
3

lim

c3—0
If f — oo it follows that c3 — 0. Thus it may be concluded that if f — oc, the
solution (5.26) approaches one of the two solutions of the recovery equation (5.7).
Finally note that as f — oo, (5.26) remains finite. To see this we compute

V= ——limfﬁoo L1 = —(h7 + ihg),

5 _ 1 (hs — he) + i(hy + Ps)

P f'l—{gc S_/_ ! hr + ths

@ = [Im(PV*) - (h5 - h4ﬂ/2,

W=iV.

Thus the solution (5.26) to the pseudo-orthographic approximation remains finite and

approaches one of the two solutions to the recovery equation (5.7). It follows that it
he one which does not change with f because the other solution does

(5.27)

must approach t

not remain finite. a
Remark. The limiting solution (5.27) is exactly the solution to the recovery

equation under orthographic approximation. Such an equation will be given by
hy = war + by, ha = war + b2, hg = w2p. hy = wi + waq. hs = —wy + w3p. he = waq,
h7 = wa, and hg = ws. Verification of this fact is straightforward.

Remark. The advantage of using pseudo-orthographic approximation as opposed
to solving the recovery equation (5.7) is that one needs to solve only linear equations
in the former whereas one needs to solve a cubic equation in the latter.

6. Identifiability condition of a planar surface undergoing affine mo-
tion. We consider a planar surface undergoing an affine motion and note that the
motion of the shape parameters is given by (2.10). In this section we shall consider
identifying parameters of (2.10) by considering an output equation given by (3.8).
However, since (3.8) is nonlinear in the parameters, we would like to homogenize the

vector (dy,... ,dg)T as follows. Let us define
(6.1) 4 =% j=1..8
Yo
so that the vector
(6.2) (y1,---+Yo)
is a homogenization of the essential parameters. Equation (3.8) can be written as
1 0 0 ~fb fais
Y2 0 0 —fb2 faas
Y3 —b, 0 bg—dan an —as 5
Ys 0 -b} —ba12 a2 _
(63) Ys = —blz 0 —6(121 a21 _qg y
Y6 0 —by bz—0bax a2 —as3 7
7 —by 0 —ba3 as1
ys 0 —bg —5(132 ass
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where p, g, §, and 7 have been defined as given by (2.8) and

(6.4) b = (by — a136 by — a6 by — asz6)2(b, bl ).

We now consider the shape dynamic module problem described as follows.

Shape dynamic module problem. Consider a dynamical system (2.10) to-
gether with the output function (6.3). The problem is to identify the parameters A,b
given by (2.7) and the initial conditions p(0), g(0}, §(0), #(0) to the extent possible.

The main result of this section is to derive a complete answer to the shape dy-
namic module problem. Note in particular that the perspective system (2.10), (6.3)
is parameterized by a set of 12 motion parameters A,b and a set of 3 shape param-
eters p.q.r. We shall show that not all 15 parameters are identifiable, i.e., there is
a nonunique choice of parameters for which the observation described by (6.3) is the
same. The main result of this section is described as follows.

THEOREM 6.1. Under a suitable generic condition on the set of 15 parameters of
the perspective system (2.10), (6.3), the following parameters or functions of parame-
ters are identifiable. They are

(65) (A,p,q,01,02,(53) 5

where ¢y, ¢, c3 is defined in (3.9).

Thus 14 parameters or functions of the parameters out of a total 15 free parame-
ters are identifiable. The method of solving a set of recovery equations presented in §3
cannot be used to identify these 14 parameters. This is because the output equation
(6.3) describes only 8 equations in 15 unknowns. In order to identify 14 parameters,
one needs to use the dynamical system (2.10) together with the output equation (6.3).
The parameter identification has been carried out via a new “realization theory for
perspective systems” described in this section (see also [37]). An important corollary
of Theorem 6.1 is now described.

COROLLARY 6.2. Consider the perspective system (2.13) (6.3) parameterized by
a set of nine parameters. (Here we assume that in (6.3) the parameters a;; have been
replaced by w;; as given by (2.12)). Under a suitable generic condition on the set of
nine parameters, the following parameters or functions of parameters are identifiable.
They are

(6.6) (wi.wo,w3,p.q,c1,C2.C3),

where ¢y, c2, ¢z is defined in (5.2).

Thus for the perspective system (2.13), (6.3), eight functions of the nine param-
eters are identifiable. In §5. we have shown that the eight functions (6.6) can be
identified, up to a choice of two alternative solutions, by solving the output equation
(6.3) alone. Thus use of the dynamical system (2.13) results only in recovering the
correct alternative.

In order to prove Theorem 6.1 we need the following notation. Define

(6.7) P=(pGq-57)"

: V=(y 299",
_ AT

(6.9) A=< o 8)

(6.10) A = (the 9 x 4 matrix in (4.12)).
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From (2.10), (6.3) it follows that
(6.11) Yy = AeP(0),

where the vector Y is observed up to a homogeneous line. We shall denote this line
by [V]. As has been described in Ghosh, Jankovic, and Wu [36], the nonuniqueness in
A, A, P(0), which produces the same [V}, is given by the orbits of the following group
action. They are described as follows:

1. P € GL(4) acting on (A, A, P(0)) as follows:

(6.12) (A, A, P(0) — (AP, Pl AP, PTP(0)) -
9. 1 € R acting on (&, A, P(0)) as follows:
(6.13) (AL A P(0) — (A pl + A, P(0)).
3. A he € R — {0} acting on (B, A, P(0)) as follows:
(6.14) (A, A P0) = (MDA PO

The collective actions (6.12), (6.13), (6.14) will be referred to as the action due to
the perspective group G. It is easy to see that the parameters in the orbit of the
group G produce the same output (V] and hence cannot be identified. The following
proposition shows that under an appropriate generic condition on the parameters
of the perspective system (2.13), (6.3), two orbits of the group ¢ indeed produce a
different output [V]. Hence the orbits of the group G can indeed be identified.
PROPOSITION 6.3. Consider a perspective system in continuous time given by

(6.15) i z [12:51’]

where we assume that the triplet (C, A, Tg) 18 minimal. The set of all minimal triplets
which produce the same output z is given precisely by the orbits of the G action.
Proof of Proposition 6.3. Note that the vector function y(t) = CeAtxg is observed
for each t up to a homogeneous line. Assume that there is a scaling function r(t)
such that r(t)y(t) is the output of a linear system of degree 1., where we assume that
r(0) = L Discretizing the system (6.15) at discrete interval T,2T...., where T has
been chosen to be sufficiently small, it follows from [37] that r(jT) = r(T)’. Since
T is arbitrary, it follows that the function r(t) is such that r(jTt) = r(Tt), for all
teR,j=0,1,.... If r(t) is a differentiable function at ¢ = 0, it follows that

r(t + At)
r(t)

One therefore concludes that

=r(At) =7(0) + r'(0)At.

' (t) = 7 (0)r(1).
Thus the scaling function r(t) is an exponential function given by
r(t) = e O,

Thus the scaling of C, A, xg is such that C, zo is scaled by a scalar multiple. The

matrix A is scaled as

A ' (0)] + A g
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In general the GL(4) action on the triplet (A..A.P(0)) changes the structure of
the matrix A and A. The subgroup of GL(4) which preserves the structure is now
described.

THEOREM 6.4. Define

(6.16) bll = bl — a136, bIQ = bg - a23(5. b% = b3 — CL33(S.

Assume that

(617) b/lagg - béa13 # 0, b/2(131 - béagl 75 0, bllagg — b{;alg # 07
(6.18) (b, bl bY) # 0,
(6.19) < b‘ép > has rank 3,

where b'T = (b} b by). Under the generic assumption (6.17), (6.18), (6.19), the only
subgroup of GL(4) which preserves the structure of (A, A) under the action (6.12) is
given by

11 0 0 0
0 1] 0 0
0 0 Gy 0
0 0 6(11] (Y44

(6.20) P=

where aqy # 0, agq # 0.
Proof of Theorem 6.4. Let

1 0 00
01 0 0
(6-21) Q=100 1 0
0 0 6 1
It is easy to see that
A o —AT 0
(6.22) A 2QTTAQ = ( ¥T 0 )
0 0 —fb fais
0 0 —fblz fa23
—bll 0 é a11 — Aas3
A 0 —b’l 0 a2
(623) Al = AQ = -—bIQ 0 0 a9
0 —bIQ ‘{3 aoo — 433
—bé 0 0 asl
0 by 0 as2
0 0 0 1

Let Q; = (aj;) be a nonsingular 4 X 4 matrix. Under the generic condition (6.17),
(6.18) it may be concluded that A;Q; has the same structure as A; if Q; has the



A PERSPECTIVE THEORY I[N VISION 1549

form
of
OW 11 0 0 iq
' 0 X111 0 [6 DX A auf ©
DY = ==
(6~4) Ql 0 0 11 34 ( 0 Y44 ‘
0 0 0  au
Computing Q7 'A1Q; we have
: AT 4 Lo - ATO+ -ebTe
(6.25) Q7'AQ1 =
_aup'T -~ 1L yTg
44 [e X ¥}
In order for QflAlQl to have the same structure as .A; we must have
! ¥TO =0 and ATO =0.
Under the generic condition (6.19), it follows that © = 0. Thus @, is of the form
nly
1S ; ayi; O 0 0
_ 0 11 0 0
(6.26) Q1= 0 0 ay 0
0 0 0 44
' The structure (6.20) of the P matrix is obtained by defining P = QQ,, where Q, Q1
are given by (6.21), (6.26), respectively. 0
Note that P~ AP takes up the form
: —AT 0
‘ On the other hand, P~!P is given by
| 5 a5 ress\T
j (6.28) (L q _ 5 T+ 5>
a1y 1 Qir 044
and AP is given by
H 0 0 —ay fb] o fars
0 0 —an fby Qgq fazs
: —oq1b) 0 apby  asu(an — ass)
: 0 —Oqlbll 0 4412
\ (629) —anb’Q 0 0 44021
0 airby apby  ass(az — azs)
’ —ay1bh 0 0 (¥4403]
i 0 —ay1 bl 0 (44032
0 0 0 g4
In order to get the last row of AP to be a unit vector we apply the group in (6.14)
] to (6.29) with Ay = O%H From (6.27), (6.28), (6.29) it can be concluded that the
17h)’ i subgroup (6.20) essentially scales the vector b by the scalar 5. Likewise it scales
the :
.

A_A
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r+6 by g—“: Hence the function (—r{_{ﬂ remains invariant in the orbit of the subgroup

(6.20) action.

The subgroup (6.13) essentially changes the diagonal of the matrix LA. Since
the diagonal of the matrix A is given by (—aj1 — a2 — ass 0) it follows that the
subgroup which preserves the structure is given by p = 0 and the parameters ai.
as2, a3z remain invariant in the orbit of this subgroup action.

Proof of Theorem 6.1. Note that under the generic conditions (6.17). (6.18), (6.19)
the functions (6.5) remain invariant under the action of the perspective group g, ie.,
they remain constant in the orbits of the G action. In Proposition 6.3 we show that
additionally if (A, A,7(0)) is a minimal triplet then no two orbits of the G action
produce the same output V). O

7. Identification of parameters based on the orthographic projection.
The orthographic projection occurs as a special case of the generalized projection
(3.1) when we assume 6 = f and let f — oc. In this case, the parameters dr. dg of the
output equation (6.3) or (3.9) are forced to zero or equivalently, the quadratic term
in (3.7) or (3.12) drops out. Thus. the optical flow equation is given by (3.13) and
the recovery equation is given by the first six components hi. ..., hg of (3.11).

7.1. Solution to the recovery equation for the rigid motion. We begin
this section by considering a plane undergoing a rigid motion given by (2.13). The
corresponding recovery equation is given by

dy = war + by, do = w3r + ba, dy = wap,
(7.1)
dy =wi +waq, ds=—wi+twsp. ds = wsg,

where we shall assume that the vector (di,.. .. ds) is estimated by the IDM. Kanatani

[11] has considered the problem of solving (7.1) for the parameters wy, w2, w3, p, ¢, 7, by,
by. The parameter bz does not enter (7.1) and is therefore not recoverable from the
equation (7.1). Moreover since we have six equations in eight unknowns we do not
expect to recover the parameters even up to finitely many alternatives. In fact, it is
already known (see Kanatani [11]) that the recovery equation (7.1) can be solved in
the following way.

Let us define

(,, 2) V =d + ids, T = d3 + dg, R =d5 — d4,
r S=ds—dg+i(dy+ds). P=p+ig. W =—ws+iwy.
From (7.1) we obtain the following:

PW =S,

(7.3) PW* = —(2w; + R) — iT.

The equation (7.3) can be solved as follows.

wh = —% (Ri \/SS* '—TQ),
(7.4) W=kexpl[i{Z+ sarg$S — targ(—2w; - R - iT)},
P=ig.

where k is an arbitrary constant. The parameters by, by and r are given as B—iWr =V
where B = by + iby. Thus we have the following theorem essentially described by
Kanatani {11].
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THEOREM 7.1. The recovery equation (7.1) can be solved up to two parameters
ki, ks and up to a choice of sign as follows:

wlz—é(RivSS*—TQ),
W =kiexp [i {% + JargS — jarg (2w — R -iT)},

(7.5) P=i%,
B =V +iksW
r = k)f)

The proof of Theorem 7.1 is clear from the above discussion. Note that the solution
to the recovery equation (7.2) is ambiguous up to a sign and is obtained up to a
pair of parameters k; and kg, out of a total of eight parameters, which excludes the
parameter bs.

7.2. Identification of a planar surface undergoing affine motion. Let us
now homogenize the output equation (7.1) described as follows:

Y1 0 0 -=b a3

Y2 0 0 —by a0 -

Y3 a3 0 —air 0O b
(7.6) Ya | = 0 a3 —aiz 0 _qg

Ys azs 0  —axz O .

Y6 0 ap —az O

Yo 0 0 -1 0

We now proceed to consider the technique described in §7 for the perspective system
(2.10), (7.6). Note that (7.6) is the homogeneous version of the recovery equation
(3.8). Denote the 7 x 4 matrix in (7.6) by . The main result of this section is
described as follows.

THEOREM 7.2. Consider the perspective system (2.10), (7.6) parameterized by
a set of 15 parameters. Assume furthermore that the parameters satisfy the generic
condition

(7.7) a13 #0, brass — baars # 0, @i2a23 — 13022 7 0, a11023 — G13a21 # 0

and the triplet (m, A, P(0)) is a minimal triplet. The functions of the parameters that
can be identified are given by

as a3 ao: a3
@, by — b2, as — a1 g3e, 2a22—012m- —azp — a1, —a13q — a2,
(7.8) —apzr — b1 & (ai) +apan + aizasi) — ané.

(a11a12 + a12a22 + a13a32) — ar2€. (an by + arebs + aizbs) — b1,
where £ is defined to be
£= ﬁ (a11a13 + Q12023 + @13033) -

Remark. Thus there is a total of 11 functions of motion and shape parameters
that can be identified.

Proof of Theorem 7.2. Let P be a nonsingular 4 x 4 matrix. Under the generic
condition (7.7) it can be shown that =P has the same structure as that of 7 provided
P is of the form

Gy 0 13 0

_ 0 oann o 0

(7.9) P = 0 0 (s 0
0 0 a4 an
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and %’/TP is of the form
33

0 0 ~by + Z—;‘zam %alg
0 0 —by + 3—22(123 Z—;agg
aig 0 —ay + g—;iaw 0
Q1 — 223
(7.10) gQOCLO? a330a13 _Z;f i ﬁzg 8
ogz Qg3
0 a—;jagg —Q22 + 2—33(123 0
0 0 —1 0

Likewise P=1 AP is of the form.

- 3, a3
an + 2aig —az + g 92 6, 0
(7.11) @2+ GRaiz —az; + S2agy Oy 0
- 81 [23
—arais ~ary (23 O3 0
by + @3 — by + @3
by + S2ayy bo+ a3 ©4 0
where
1 a
©1 = — 5 (a3an + aozas + aszaz) + airags (13013 + ag3a93 + aszays)
1 [o3
O2 = — - (a13a12 + 3020 + azzaz;) + Siiag (13013 + @233 + agzass)
1
O3 = — 7= (a13a13 + aggazs + aszazs),
1 [a4
Os = =51 (ausbi + agsby + azshs) + anass (13013 + a23a93 + agzass) .

Of course the matrices (7.10), (7.11) are the new structures of the matrix 7 and A
respectively after transformation.

It follows that the set of parameters that would produce the same output (7.6) is
given by

apy — apl — maags,
Q21 7 G21 — Maag3,
a2 — a2 — M3a;3,
a22 7 G22 — W3Qa3,
a3 — m1a13,
Q23 — T a23,
by — by — a3,
(712) by > by — 74023,
aszy — 7r_11 (maa11 + m3a91 + asy) :—f (m2a13 + m3a03 + ass)
azp W—ll (maa12 + w3a00 + azz) :—f (maa3 + T3a23 + a33),
by rr_11 (maby + m3by + b3) — 2 (maa13 + 7303 + a33)
ags = Taa13 + T3Q23 + ass,
p =(p+m2),
g 5 (q+m3),
T e (r ),

where

2 IR
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In fact (7.12) describes the orbit in the parameter space corresponding to the subgroup
(7.9). The orbit is parameterized by 4 parameters 7y, T2, 73, 4.

From the results in Proposition 6.3 it can be inferred that parameters can be
identified up to the orbit described in (7.12). Finally the functions (7.8) are derived
by choosing w1, 72, T3, T4 by restricting a11 — maaiz = 0, by — mqa13 = 0, ma13 = 1,
and a0 — w3a;3 = 0. 0

7.3. Identification of a planar surface undergoing rigid motion. If we
assume that the matrix A is skew symmetric, one needs to restrict the following in
(7.12):

(7.13) a1 = aop = azz =0, a2 = —az1, Q13 = —031, A23 = —A32.

It follows that mo = 0, w3 = 0, implying that ay3 = 0. a3 = 0. Furthermore may3 =
—Tlagl, ie., m = x1 or a3 = fass. Thus the subgroup P described by (7.9) is

further restricted to

Q11 0] 0 0

_ _ 0 X111 0 0
(7.14) P=1 9 0 zan 0
0 0 43 11

The orbit (7.12) under the new subgroup action (7.14) is given by a1z — a12, ¢13 —
+ay3, ags > Fags, by — by F $2ayg, by v bo F S agg, by — by, pro Ep, g +q,
and r— =(r + §22).

Thus we have the following theorem regarding the condition of identifiability for
a perspective system (2.13), (7.6), parameterized by a set of nine parameters.

THEOREM 7.3. Consider the perspective system (2.13), (7.6). parameterized by
Wy, wa,ws, b, b, b3, pyg, 7. Assume that the parameters satisfy the generic condition
wy # 0, wg # 0, wy #0, byws — baws # 0. Assume furthermore that the triplet

0 0 "bl wo
0 0 —bQ w3

w 00 0 0w e P
0 Wy —wWh 0 5 ! 3 s q;
—wy  —Wwj 0 0 -5
w3 0 Wi 0 b _b _b 0 _
0 w3 0 O ! 2 3
0 0 -1 0

is minimal. The functions of the parameters that can be identified are given by wi,
+un, w3, by F ‘;—ﬁwg, bs F z—ﬁwg, +bs, £p, +q, £(r + %f—f) The ratio 5 is to be
thought of as a single parameter.

Remark. In Theorem 7.3 the parameters that can be identified are ambiguous up
to a sign and up to one parameter. It may be verified that the functions by + wer and
by +wsr remain constant regardless of the choice of the sign. Thus one concludes that
the parameters by, by, 7 can be recovered up to a line in the space (by,ba.1)

THEOREM 7.4. Let us consider the perspective system (2.13), (6.3). Under
generic condition, the set of parameters or function of parameters that can be identi-
fied in the set wy,wa, w3, by, ba, b3, p,q.7 approaches the set of parameters or function
of parameters (up to possibly a sign ambiguity) that can be wdentified for the perspec-
tive system (2.13), (7.6) as f — oc. The parameters that can be wdentified as f — oo
are given precisely by wi,w2,ws, p,q, bz, by + war, by + w3r.
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Remark. The result of Theorem 7.4 is actually quite surprising. It says that for the
projection (3.1), if f = ¢ and f — oo, as the generalized projection (3.1) approaches
orthographic projection, the line in the parameter space (b;,bs,bs,7) that can be
identified at any given f indeed approaches (modulo sign) the corresponding line in
the parameter space (b,. bs, bg, r) that can be identified under orthographic projection.
This continuity continues to hold even though under orthographic projection one
measures only the vector (d;....,ds), i.e., the measurements dr and dg are completely
lost.

The following theorem generalizes the result stated in the Theorem T7.4.

THEOREM 7.5. Let us consider the perspective system (2.10), (6.3). Under
generic condition. the functions of parameters that can be identified as f — > are
gwen precisely by A, p. q. by + ays7. by + agsr. and by + assr. Thus parameters
are recovered up to a one-parameter ambiguity even when f — oc. Moreover this
one-parameter ambiguity curve is a subset of the four-parameter orbit described by
(7.12).

Proof of Theorems 7.4 and 7.5. At a given value of f, the parameters that can be
identified have been already described by Theorem 6.1 and Corollary 6.2. As f — o,
the essential parameter d; approaches h; and dy approaches hs. Hence in the limit
one observes by 4+ ai3r and by + agsr. At a given value of f, the parameters by and r
are known only up to the line given by

(d3 + pey)r — (arr — ass)r + bz = (ay; — (ds + pey)) f.

As f — o the above line converges to the line b3 + ag3r = constant. Hence in the
limit one also observes the function b3 + agzr. Finally note that in the orbit described
by (7.12), if we assume that 75 = 0, 73 = 0 and m; = 1. we obtain a one-parameter
orbit in which A, p, q. by + ai37r, bs + ao37, and bs + aszsr are all invariants. This
completes the proof. O

Remark. The proof of Theorems 7.4 essentially follows from Theorem 5.3.

8. Simulation results. Extensive simulations have been carried out for the
methods outlined in §§4 and 5 of this paper. Simulations were performed only for
the case of rigid body motion of a planar surface. First, the “intensity-dvnamics”
based approach was implemented to estimate the essential parameter vector d follow-
ing equations (4.3)-(4.8). Simulations were performed for this approach using three
different texture functions while the effect of varying the spatial and temporal sam-
pling rates (step size) were examined. Additional algorithms were implemented to
estimate the vector d using “feature-dynamics” based approaches for points (4.24)-
(4.27), lines (4.17)-(4.23). and curves (4.13)-(4.15). Simulations for each of these
approaches were performed to examine the effect of varying the number of points
sampled and the step size. Motion parameters were estimated following equations
(5.9)-(5.11) and (5.15)—(5.16). We draw the following conclusions from the results of
the simulations:

1. Under the assumptions of a textured surface, perfect focus. and no noise, the
methods outlined in this paper are effective for the estimation of shape and motion
parameters.

2. The choice of the initial intensity function does not significantly affect the
accuracy of the “intensity-dynamics” based approach. To illustrate, given the initial
intensity function e(x,y.0) = sin®x + cos?y with a step size of Ax = Ay = At =
1073, we were able to estimate with a root mean square (rms) error of approximately
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TABLE 8.1
Observation at multiple times removes the ambiguity of dual solutions.
F Motion and shape parameters
w | ¢ [p.qf*
Actual values -4.000 | 3.500 0.500
(at t = 0.0, f = 1.0) | 5.000 1.500 -1.500
1.000 1.500
Solution no. 1 -4.750 | -0.750 -2.333
fort = 0.0 0.750 2.250 -1.000
7.000 1.500
Solution no. 2 -4.000 | 3.500 0.500
for t = 0.0 5.000 1.500 -1.500
1.000 1.500
Solution no. 1 -3.932 | -1.244 -2.333
for t = 0.1 0.083 1.506 -1.000
5.758 1.574
Solution no. 2 -4.000 | 3.673 0.790
for t = 0.1 5.000 1.574 -0.957
L 1.000 1.574

9.9 x 10~5. The rms error for the initial intensity function e(z,y,0) = 1/z +1/y was
approximately 1.2 X 1075 for the same step size.

3. Increasing the number of points sampled does not, in general, significantly
increase accuracy. For example, in the case of the “feature-point” based approach,
observation of the minimum four points yielded an rms error of 1.8 x 107% whereas
observation of 32 points yielded an rms error of 8.6 x 1077, In both cases the step
size was as noted before.

4. Decreasing the spatial or temporal sampling rates has a significant adverse
affect on accuracy. For example, if the step size is increased to Ax = Ay = At = 107",
the rms increases by roughly the same factor, 103. This effect cannot be compensated
for by increasing the number of points sampled.

Further simulations were performed to demonstrate how the ambiguity of the two
solutions described in Theorem 5.1 can be resolved by sampling at either multiple
times or multiple focal lengths. The use of multiple times to resolve this ambiguity
has previously been suggested by Waxman and Ullman [7] and Tsai and Huang [21].

In Table 8.1 we note that the estimated values for w do not change with time in
solution no. 2 but do change with time in solution no. 1. Thus, since the w values
are constant, solution no. 2 is chosen as the correct solution. The values of ¢, p. and
¢ change with time in both solutions. This is to be expected since ¢ depends on r and
p. q, and r all vary with time. Table 8.2 illustrates corresponding results for multiple
focal lengths. For the correct solution in this case, the values of w, p, and g remain

constant while the values of ¢ vary with focal length.

9. Summary and conclusions. This paper introduces a two-module approach
to motion and shape estimation either by observing dynamically moving intensity or
shading or by observing dynamically moving feature points, lines, or curves. When
restricted to a planar surface undergoing affine motion, the problem can be tackled
by estimating an intermediate set of parameters known as essential parameters. We
show that the essential parameter vector can be estimated, under a suitable generic
condition, independent of whether the observation is the moving intensity function or
the moving features on the image plane.

We introduce a new “dynamical systems” viewpoint on the motion and shape
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TABLE 8.2
Observation at different focal lengths also removes the ambiguity of dual solutions.

Motion and shape parameters

w c [p.q]”

Actual values -4.000 3.500 0.500

(at t = 0.0, f = 1.0) 5.000 1.500 -1.500
1.000 1.500

Solution no. 1 -4.750 | -0.750 -2.333

for f=1.0 0.750 2.250 -1.000
7.000 1.500

Solution no. 2 -4.000 | 3.500 0.500

for f=1.0 5.000 1.500 -1.500
1.000 1.500

Solution no. 1 -3.167 | -0.500 -4.000

for f =20 0.500 1.500 -2.333
8.167 1.000

Solution no. 2 -4.000 | 4.000 0.500

for f =2.0 5.000 2.333 -1.500
1.000 1.000

/ \ 15 dimensional parameter space

p:  position of the actual parameter.

s: 4 dimensional surface passing through p which characterizes the
parameters that can be identified under orthographic projection.

fj : 1 dimensional curve passing through p which characterizes the
parameters that can be identified under generalized projection
(2.12) when f=98=]j.

fg; limitof fwhenj ‘9% Note that fy, 'S,

Fic. 9.1. Identifiable parameters for a planar surface undergoing an affine flow.

estimation problem and show that the dynamics of the plane, known as the shape
dynamics, together with the essential parameters viewed as an output equation are an
example of a perspective system. Introducing a new realization theory for perspective
systems, we show that the parameters of the system can be identified up to orbits
of a suitable “perspective group” action, provided of course the parameters satisfy a
suitable generic condition.

Using this approach, we analyze a planar surface undergoing a rigid motion and
show that the solution to the parameter estimation problem under a general projection
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and a pseudo-orthographic projection indeed converges to that obtained (up to choice
of a sign) under orthographic projection as the general projection model converges in
the limit to the orthographic projection. This conclusion is in sharp contrast to that
reported by Kanatani {11], wherein only the recovery equation has been used. We also
analyze a planar surface undergoing an affine motion and show that under general
projection, parameters are recovered up to a one-parameter ambiguity whereas under
orthographic projection parameters are recovered up to four-parameter ambiguity. In
the limit when the general projection model converges to the orthographic projection,
the above family of one-parameter orbits converge to a one-parameter subset of the
four-parameter class.

15 dimensional parameter space

FiG. 9.2. Identifiable parameters for a planar surface undergoing a rigid motion.

This indicates that “one can see a nonrigid affine flow better” using a visual
system with the capability of varying the focal length f all the way to infinity, as
compared to a visual system with focal length f fixed at infinity. However, for a rigid
flow, there is no distinction.

The above conclusion has been summarized in Figs. 9.1 and 9.2, In Fig. 9.1 we
show that if p is the position of the actual parameters in R, where R' is the
parameter space for A,b,p,q.r, under projection (3.1), if f = 6 = j. the curve fj,
j=1,2.3,... indicates the set of parameters that can be identified for various values
of f. In fact when f — o0, , fi denotes the limiting curve that describes the set
of parameters that can be asymptotically identified. The four-dimensional surface S
characterizes the parameters that can be identified under orthographic projection. In
this paper we show that fo, C S. Thus we conclude that for an affine flow it helps
to consider a visual system with a capability to vary f. For f permanently with
focus at oo, parameters are recovered up to a four-parameter ambiguity as opposed
to one-parameter ambiguity in all the other cases.

In Fig. 9.2 we show a nine-dimensional subspace W of parameters describing the
parameters of a planar surface undergoing a rigid flow. The subspace W intersects
S in exactly two one-dimensional curves. In this paper we show that one of the two
one-dimensional curves is f-. Thus for a planar surface undergoing a rigid flow,
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orthographic projection identifies parameters up to a one-parameter curve and up to
a sign ambiguity. Via the process of choosing a projection (3.1) and letting f — oc, i
one can determine the sign. The one-parameter ambiguity remains.
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