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Abstract— In this paper we study the human eye movement
and the head movement system as a simple mechanical control
system. Most of the time, eye movements obey Listing’s con-
straint, which states that the allowed orientations of the eye
are obtained by rotating a fixed ’primary gaze direction’ by
a subclass of rotation matrices. These rotation matrices have
their axes of rotation restricted to a fixed plane perpendicular
to the primary gaze direction. Likewise, a spontaneous head
movement satisfy Donder’s constraint which is similar to the
Listing’s constraint except that the axes of rotation of the
head away from a primary head position is restricted to a
fixed surface, which is not necessarily a plane. When head is
restrained to remain fixed, eye movement satisfies the Listing’s
constraint throughout its entire trajectory. On the other hand,
when the head is allowed to move (satisfying the Donder’s
constraint), the eye satisfies the Listing’s constraint only at the
beginning and at the end of a trajectory. Intermediate points of
the trajectory, partially guided by the vestibulo-ocular reflex,
do not apparently satisfy the Listing’s constraint. In this paper
we introduce control strategy that would regulate the eye from
an initial to a final gaze position with or without satisfaction
of the Listing’s constraint during all the intermediate points
of the eye movement trajectory. We study the head movement
problem under the assumption that the head always satisfies
the Donder’s constraint. The control signals are generated by
choosing a suitable potential function and adding to it a suitable
damping term. The overall dynamical system is constructed
using the well known Euler Lagrange’s equation. The main
result of this paper is to compare, using simulations, the total
distance and the total time it takes to regulate the eye and the
head between two orientations.

I. INTRODUCTION

Modeling the eye in order to generate various eye movements
has been one of the important goals among neurologists,
physiologists and engineers since 1845 (see the work of
Listing, Donders and Helmoltz etc in [12]). Previous studies
which used modeling as a means of understanding the
control of the eye movements have adopted two main
approaches. (see [6] and [11]. In spite of several notable
studies of three dimensional eye movements [1], [5], with
the exception of some recent papers in the subject [9],
[15], there has not been a rigorous treatment of the topic
in the framework of modern control theory and geometric
mechanics. Assuming the eye to be a rigid sphere, the
problem of eye movement can be treated as a mechanical
control system [3], [8] and the results of classical mechanics
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can be promptly applied.

Most of the earlier studies in eye movement assumed
that the head remained fixed and the eye is allowed to
move freely. It was observed by Listing (see [13]), that
in this situation the orientation of the eye was completely
determined by its gaze direction. Subsequently it was
shown that starting from a frontal gaze, any other gaze
direction is obtained by a rotation matrix whose axis of
rotation is constrained to lie on a plane, called the Listing’s
Plane. Consequently, the set of all orientations the eye can
assume is a submanifold of SO(3) (see Boothby [2] for a
definition) called LIST. Listing showed that in a head fixed
environment, eye orientations are restricted to this specific
submanifold LIST.

In this paper, we are interested in the study of eye movement
when head is allowed to move as well. To fix our ideas,
assume that the head can move spontaneously on the torso
and the eye moves with respect to the head coordinate.
Assume that our goal is to fixate on a stationary target
on the visual space observed at a certain angle from the
initial gaze direction. In this situation, as was described
by Tweed [14], the eye moves rapidly towards the target,
violating the Listing’s constraint. However, even under this
motion, the initial and the final orientation of the eye is
on the submanifold LIST. The head, in the mean time,
moves spontaneously towards the object as well, following
a Listing like constraint that goes by the name Donder’s
constraint [7], [10].

Donder’s law states that starting from a frontal head
position, any other head orientation is obtained by a rotation
matrix whose axis of rotation is constrained to lie on a
two dimensional surface, called the Donder’s Surface [14].
Consequently, the set of all orientations the head can assume
spontaneously is a submanifold of SO(3) called DOND.
We would like to remark that unlike the eye, head can be
oriented voluntarily outside the submanifold DOND. For
simplicity, we shall not detail this voluntary action in this
paper.

Simultaneous movement of the eye and the head to fixate on
a target, either stationary or moving, is a subject of intense
research (see [4]). The basic approach of this paper is an
extension of our earlier paper [9].



II. RIEMANNIAN METRIC ON SO(3), LIST AND DOND

It has been described in [9] that eye rotations are typically
confined to a sub manifold LIST of SO(3) especially when
the head is restrained to be fixed. In order to write down the
equations of motion, one needs to know the kinetic and the
potential energies of the eye in motion. The kinetic energy is
given by the induced Riemannian metric on LIST, induced
from the Riemannian metric on SO(3). The Riemannian
metric is derived from the moment of inertia of the eye ball.
We assume that the eye is a perfect sphere and its inertia
tensor is equal to I3×3. This is associated with a left invariant
Riemannian metric on SO(3) given by

< Ω(ei) ,Ω(e j)>I= δi, j, (1)

where

Ω(ek) =

 0 δ3,k −δ2,k
−δ3,k 0 δ1,k
δ2,k −δ1,k 0

 (2)

and δl,m denotes the Kronecker delta function. An easy way
to carry out computation using this Riemannian metric is
provided by an isometric submersion rot between S3 and
SO(3)

S3 rot→ SO(3) (3)

The map rot has already been described in [9]. Let us now
define a coordinate map on S3 as follows:

ρ : [0,π]× [0,2π]×
[
−π

2
,

π
2

]
→ S3 (4)

where

ρ (θ ,ϕ ,α) =


cos(ϕ/2)

sin(ϕ/2) cos(θ) cos(α)
sin(ϕ/2) sin(θ) cos(α)

sin(ϕ/2) sin(α)

 (5)

The composition mapping rot ◦ ρ (θ ,α,ϕ) is a rotation
around the axis  cosθ cosα

sinθ cosα
sinα

 (6)

by a counterclockwise angle ϕ . Note in particular that
when α = 0, the axis of rotation is restricted to a plane,
known as the Listing’s plane. The angle θ measures the
angle of the axis on the Listing’s plane and the angle α
measures deviation of the axis from the Listing’s Plane. The
Riemannian metric on SO(3) is given by:

g = sin2 (ϕ/2)cos2 (α)dθ 2 + sin2 (ϕ/2)dα2 +
1
4

dϕ 2. (7)

Restricted to the Listing’s plane, i.e. when α = 0, the
Riemannian metric on LIST is given by

g = sin2 (ϕ/2)dθ 2 +
1
4

dϕ 2 (8)

as has been already described in [9]. The submanifold
DOND is described by restricting

α = ε sin(2θ), (9)

where ε is a small parameter. The Riemannian metric on
DOND is computed to be

g = sin2 ϕ
2

[
cos2 α +

(
∂α
∂θ

)2
]

dθ 2 +
1
4

dϕ 2. (10)

Using the Riemannian metric (7) for SO(3), it is a straight-
forward but tedious computation to show that the associated
geodesic equation is given by

θ̈ + θ̇ ϕ̇ cot(ϕ/2)+ θ̇ α̇ tan(α) = 0

ϕ̈ −
(
θ̇
)2 sin(ϕ)cos2 (α)− (α̇)2 sin(ϕ) = 0

α̈ +
1
2
(
θ̇
)2 sin(2α)+ ϕ̇ α̇ cot(ϕ/2) = 0. (11)

When α = 0, the above geodesic equation (11) reduces to
the following pair of equations already described in [9] given
by

θ̈ + θ̇ ϕ̇ cot(ϕ/2) = 0

ϕ̈ −
(
θ̇
)2 sin(ϕ) = 0. (12)

The geodesic equation (12) can also be directly computed
from the Riemannian metric (8) on the submanifold LIST
of SO(3).

Finally, the geodesic equation on DOND can be computed
as follows.

[
cos2 α +

(
∂α
∂θ

)2
]

θ̈ − ∂α
∂θ

[(
∂ 2α
∂θ 2 − 1

2
sin(2α)

)
θ̇ 2
]

= 0

ϕ̈ −
(
θ̇
)2 sin(ϕ) = 0. (13)

where α is defined as in (9).

III. GENERAL EQUATION OF MOTION

The Riemannian Metrics that we had obtained so far in (7),
(8) and (10) enables us to write down an expression for the
kinetic energy KE. In general, the dynamics is affected by an
additional potential energy and an external input torque. Let
us consider a general form of the potential function given by

V (θ ,ϕ ,α) = A sin2 ϕ
2

+ B cos2 ϕ
2

sin2 α. (14)

The expression for the Lagrangian is given by

L = KE − V, (15)

and the equation of motion is described by

d
dt

(
∂L
∂ β̇

)
−
(

∂L
∂β

)
= τβ (16)

where β is the angle variable.



A. Motion satisfying the Listing’s Constraint

The Listing’s constraint is satisfied when α = 0 and the
kinetic energy is given by

KE =
1
2

[
sin2 ϕ

2
θ̇ 2 +

1
4

ϕ̇ 2
]
.

The following motion equation follows easily from the Euler-
Lagrange equation given by

θ̈ + θ̇ ϕ̇ cot(ϕ/2) = csc2 (ϕ/2)τθ (17)

ϕ̈ −
(
θ̇
)2 sin(ϕ)+2Asin(ϕ) = 4τϕ .

B. Motion that does not satisfy the Listing’s Constraint

When α is unrestricted, Listing constraint is not satisfied
and the rotation matrix remains unrestricted in SO(3). In this
case, the kinetic energy is given by

KE =
1
2

[
sin2 ϕ

2
cos2 αθ̇ 2 + sin2 ϕ

2
α̇2 +

1
4

ϕ̇ 2
]
. (18)

One can now obtain the following equation from the Euler
Lagrange’s equation.

θ̈ = 2 tanα α̇ θ̇ − θ̇ ϕ̇ cot
ϕ
2

+ csc2 ϕ
2

sec2 α τθ

ϕ̈ = sinϕ
[
cos2 α θ̇ 2 + α̇2 − 2A

]
+ 4B sinϕ sin2 α +4 τϕ

α̈ = −cot
ϕ
2

α̇ ϕ̇ − 1
2

sin(2α) θ̇ 2 +

[
τα − B cos2 ϕ

2
sin(2α)

]
csc2 ϕ

2
.

C. Motion satisfying the Donder’s Constraint

We have already noted that the Donder’s constraint is
obtained by setting the angle α as in (9). This way, although
the torsional component of the rotation is slightly nonzero, it
is completely specified by the angle θ . We choose the kinetic
and the potential energy as (18) and (14) respectively. We
now obtain the following equation from Euler Lagrange’s
equation.

d
dt

[
sin2 ϕ

2

(
cos2 α +

(
∂α
∂θ

)2
)

θ̇

]
− sin2 ϕ

2
θ̇ 2 ∂α

∂θ

[
∂ 2α
∂θ 2 − 1

2
sin(2α)

]
= − B cos2 ϕ

2
sin(2α)

∂α
∂θ

+ τθ

ϕ̈ −

[
cos2 α +

(
∂α
∂θ

)2
]

θ̇ 2 sinϕ = −2Asinϕ + 2Bsin2 α sinϕ + 4τϕ , (19)

where we continue to assume that α satisfies the Donder’s
constraint (9).

IV. EXAMPLES

In all, six examples are considered that relate to the eye
and the head movement problems.

Example 1 (Eye Movement Geodesic): In this example
we solve the geodesic equation (12) (corresponds to eye
rotation that satisfy the Listing’s constraint) and show in
Fig. 1 that the geodesic curves are circles passing through a
fixed point. In Fig. 1 we have plotted the gaze directions as
a function of time starting from different initial conditions.

(a) North Pole is the frontal gaze di-
rection

(b) South Pole is the backward gaze
direction

Fig. 1: Geodesics for equation (12) for eye movement that
satisfies Listing’s Law.

In plotting the figure, we have chosen the convention that
the identity rotation matrix corresponds to the frontal gaze.
Our simulations show that all geodesics are circles that pass
through the backward gaze which is physically unattainable.

Example 2 (Restricted Eye Movement with a potential
function): In this example we solve the motion equation
(17) (corresponds to eye rotation that satisfy the Listing’s
constraint) and show the gaze trajectories in Fig. 2. We have
assumed τθ = τϕ = 0, and increasing magnitudes A of the
potential function has been chosen. Our simulations show
that with increasing magnitude of the potential function, the
gaze trajectories are restricted to a smaller neighborhood of
ϕ = 0, the frontal gaze. The main message of this example
is that the region of the eye movement trajectories can be
restricted by a suitable choice of the potential function.

In the next example we show that by adding a friction



(a) A = 0.5 (b) A = 1 (c) A = 5 (d) A = 10 (e) A = 50

Fig. 2: Eye movement under the influence of a potential function, using equation (17) with τθ = τϕ = 0. The parameter
A is the amplitude of the potential function.

term, the gaze trajectories can be made to converge to
the point of minimum potential energy. This strategy will
subsequently be used to direct the final position of the gaze.

Example 3 (Damped eye movement trajectories
minimizing a potential function): We remark that in
example 2, one of the properties of the eye movement
trajectory is that with increasing amplitude A of the potential
function the gaze trajectories are restricted to the frontal
part of the visual field, a desirable feature. Unfortunately,
we observe that the trajectories themselves are increasingly
jittery. In this example we repeat example 2 but choose
τθ = −k θ̇ and τϕ = −k ϕ̇ in order to dampen the
trajectories. The results are plotted in Fig. 3.

Example 4 (Head Free Eye Movement when Listing’s
constraint is not satisfied): We modify the potential function
(14) and choose

V (θ ,ϕ ,α) = A sin2
[

θ(t)−θ f

2

]
+ B sin2

[
ϕ(t)−ϕ f

2

]
+ C cos2

[
θ(t)−θ f

2

]
cos2

[
ϕ(t)−ϕ f

2

]
sin2 [α(t)−α f

]
. (20)

The angles θ f , ϕ f and α f are constants indicating the desired
final values of the angles θ , ϕ and α . The potential function
is minimized at θ = θ f , ϕ = ϕ f , α = α f , indicating that
when α f = 0 the potential is minimized when the Listing’s
constraint is satisfied. The special form of the potential
function (20) ensures that α(t) is close to α f near the end
of the trajectory.

We vary α f both in the positive and negative directions
away from 0. For every choice of α f , we alter both θ f and ϕ f
in such a way that the final gaze direction of the eye remains
unaltered, although the final orientations are not the same.
By deviating away from the Listing’s constraint, we show in
this example that there is an optimum choice of α f (about
0.5), for which the total trajectory distance is minimized.
Likewise there is another optimum choice of α f (about 1.0,)
for which the elapsed time for the gaze transfer is minimum.

This example illustrates the point that when eye has to
move rapidly to capture a target, it pays to deviate from
the Listing’s constraint. Once the target is captured, α f is

reset to 0 rapidly by the vestibuloocular reflex.

Example 5 (Head movement Geodesic): In this example
we solve the geodesic equation (13) (corresponds to head
rotation that satisfy the Donder’s constraint) and show in
Fig. 5 that the geodesic curves are close to a circle for
small values of the perturbation parameter ε . In Fig. 5 we
have plotted the gaze directions as a function of time for
a fixed initial condition and for three different values of ε .
In plotting the figure, we have chosen the convention that
the identity rotation matrix corresponds to the frontal head
position.

Example 6 (Head movement connecting an initial and
final head direction): In this final example, we display
head movement satisfying Donder’s constraint and consider
a modified form of the potential function described as

V (θ ,ϕ) = A sin2
[

θ(t)−θ f

2

]
+ B sin2

[
ϕ(t)−ϕ f

2

]
. (21)

The angle α(t) is constrained to satisfy α(t) = ε sin(2θ(t))
at all times. We also add a frictional term proportional to
the negative derivatives of θ and ϕ . In this example, the
initial and the final values of θ and ϕ are chosen in such a
way that for every trajectory, the head moves from one fixed
head direction to another fixed head direction. The results
are displayed in Fig. 6 for three different choices of ε .

We note from Fig. 7 that for a larger value of ε , i.e.
when a larger torsion is allowed during head movement,
the total distance the head has to move is rising. This is
understandable since there is an extra head rotation for the
same head direction. Surprisingly, the time to complete the
trajectory seems to fall as a function of ε indicating that
perhaps – it pays to slightly rotate your head.

V. CONCLUSION

In general, it is important to be able to move between two
gaze positions using a trajectory that is restricted to within a



(a) A = 0.5 (b) A = 1 (c) A = 5 (d) A = 10 (e) A = 50

Fig. 3: Eye movement under the influence of a potential function and a constant friction term using equation (17) with
τθ = −k θ̇ and τϕ = −k ϕ̇ . The value of k is chosen to be 0.1.

(a) Gaze Space Trajectory (b) Trajectory Distance
vs. α f

(c) Elapsed Time vs.
α f

Fig. 4: Eye Movement under different choices of α f

(a) (b) (c)

(d) (e) (f)

Fig. 5: Geodesics for equation (13) for head movement that satisfies Donder’s Law. In each of the figures the north pole is
the frontal position of the head (top three figures), and the south pole is the backward head position (bottom three figures).
The values of ε are given by 0.1, 0.2 and 0.3 from left to right.



(a) ε = 0.1 (b) ε = 0.8 (c) ε = 1.2

Fig. 6: Head movement under the influence of a potential function and a constant friction term

(a) Total Distance Traversed (b) Total Time Elapsed

Fig. 7: Distance and time as a function of ε .

certain region of the gaze-space. This is because of physical
constraints that the eye ball cannot rotate to a certain posi-
tion. We show that this can be achieved by a suitable choice
of a potential function in conjunction with a friction term.
Appropriate control of the potential function can be used to
redirect the eye and head between points. We also show that,
not very surprisingly, the friction term dampens the overshoot
and reduces oscillations in the eye movement. Spontaneous
head movements are constrained by a perturbation of the
Listing’s Law which allows for slight amounts of torsional
movement. For a specific choice of the potential function, we
show that rapid transfer of gaze between two gaze directions
would require Listing’s constraint to be violated. We propose
that LISTING is restored at the end by vestibuloocular reflex,
not studied in the paper. Using a similar choice of potential
function, we show that rapid head movement would require
introducing slight amount of torsion (ε slightly greater than
0). In summary, an optimally chosen torsional component
improves the transfer time for both the eye and the head,
perhaps at the cost of disorienting the target.

VI. ACKNOWLEDGEMENT

The first author would like to acknowledge helpful advice
from Dr. Steve Glasauer and Dr. Erich Schneider from Ludwig-
Maximilians-University, München, Germany. This material is based
upon work supported by the National Science Foundation under
Grant No. 0523983. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Angelaki, D. and Hess, B. J. M., “Control of Eye Orientation: Where
Does the Brain’s Role End and the Muscle’s Begin”, Review Article,
European J. of Neuroscience, vol. 19, pp. 1–10, 2004.

[2] Boothby, W. M., An Introduction to Differentiable Manifolds and
Riemannian Geometry, CA: Academic-Press, 1986.

[3] Bullo, F. and Lewis, A. D., Geometric Control of Mechanical Systems,
Springer-Verlag, 2004.

[4] Crawford, J. D., Ceylan, M. Z., Klier, E. M. and Guitton, D., “Three
Dimensional Eye-Head Coordination During Gaze Saccades in the
Primate”, J. Neurophysiol., vol. 81, pp. 1760–1782, 1999.

[5] Glasauer, S., “Current Models of the Ocular Motor System”, Neuro-
Ophthalmology, Dev. Ophthalmology, Basel, Karger, vol. 40, pp. 158–
174, 2007.

[6] Martin, C. and Schovanec, L., “Muscle Mechanics and Dynamics of
Ocular Motion”, J. of Mathematical Systems, Estimation and Control,
vol. 8, pp. 1–15, 1998.

[7] Medendorp, W. P., Gisbergen, J. A. M. Van., Horstink, M. W. I. M.
and Gielen, C. C. A. M., “Donder’s Law in Torticollis”, J. Neurophys-
iology, vol. 82, pp. 2833–2838, 1999.

[8] Murray, R. M., “Nonlinear Control of Mechanical Systems: A La-
grangian Perspective”, Annu. Rev. Control, vol. 21, pp. 31–45, 1997.

[9] Polpitiya, A. D., Dayawansa, W. P., Martin, C. F., and Ghosh, B. K.,
“Geometry and Control of Human Eye Movements”, IEEE Transac-
tions in Automatic Control, vol. 52, no. 2, pp. 170–180, Feb. 2007.

[10] Radau, P., Tweed, D. and Vilis, T., “Three Dimensional Eye head and
Chest Orientations Following Large Gaze Shifts and the Underlying
Neural Strategies”, J. Neurophysiol., vol. 72, pp. 2840–2852, 1994.

[11] Raphan, T., “Modeling Control of Eye Orientation in Three Dimension
– Role of Muscle Pulleys in Determining Saccadic Trajectory”,
J. Physiol., vol. 79, pp. 2653–2667, 1998.

[12] Robinson, D., “The Mechanics of Human Saccadic Eye Movement”,
J. Physiol., vol. 174, pp. 245–264, 1964.

[13] Tweed, D. and Villis, T., “Geometric Relations of Eye Position and
Velocity Vectors During Saccades ”, Vision Res., vol. 30, pp. 111–127,
1990.

[14] Tweed, D., “Three Dimensional Model of the human Eye-Head
Saccadic System”, J. Neurophysiology, vol. 77, pp. 654–666, 1997.

[15] Tweed, D., Haslwanter, T. and Fetter, M., “Optimizing Gaze Control
in Three Dimensions”, Science, vol. 281(28), pp. 1363–1365, Aug.,
1998.


