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Motivation: Deep Brain Stimulation

e approved by US FDA for treatment of
Parkinson’s disease

Motor-control — L Y
X “\, Electrical pulse

lrm pia nted wire

Implanted pacemaker——
| _

e What is the best type of stimulation to get desired
results?



Outline

This talk: more modest goal
Suppose want single neuron to fire at certain time.

What current stimulus will make this happen?

e Neural modeling/phase response curves
e Optimal /(¢): general results and examples
e Feedback control

e Conclusions



Neural Modeling

protein molecules, lipid bilayer

act as gates - "capacitor”
- "nonlinear resistors”
neuronal
membrane -
30—-50 A
inside
£
i/ [C \L Ing i/ Ik \L I

model

T Ve — Vi —V

7777777

outside



Neural Modeling
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Neural Modeling
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Neural Modeling

dX
i
— (X) + eG(X,.t)
perturbation
da 00 dX 06 0
= (F(X) 4+ eG(X,t)) = w+68—-G(X,t)

dt X dt  oX X

Evaluate on limit cycle X, for unperturbed system:
do 00
— =w+eZ(0) G(X,t), 70) = — .

Suppose ¢G = eG(t) = (I(t),0), I(t) = current stimulus

S 90— 4 Zy(0)I(1)




Phase Response Curves (PRCs)

06 . Ab
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captures effect of impulsive perturbations in the voltage

phase response curve for Hodgkin-Huxley equations



Phase Response Curves (PRCs)
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Phase Response Curves and Bifurcations

e SNIPER bifurcation (HR)
Zyv(0) ~ 1 — cos(0)

e saddle-node bifurcation of periodic orbits  (HH)
Zy(0) ~ sin(f — 6)

e supercritical Hopf bifurcation (FIN)
Zy(0) ~ sin(0 — )
e homoclinic bifurcation (ML)
Zv(0) ~ e

different bifurcation — different PRC
— different response
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Optimal /(¢) for Specified Time of Firing

Consider

do
= 1(6)+ ZO)1(1)

f(0) gives neuron’s baseline dynamics
Z(0) is neuron’s phase sensitivity function
I(t) is a current stimulus

0 0,2nm), 6 = 0 corresponds to neuron firing

Suppose for specified time ¢, want to find input (%)
which evolves from 6(0) = 0 to 6(¢;) = 27 and minimizes

GII(1)] = / 1(t)de
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Optimal /(¢) for Specified Time of Firing
Apply calculus of variations to minimize

ctri) = [ {uer - (% - 0 - 201w

-
PlI(t)]

Euler-Lagrange equations:

oP d (OP oP d (OP oP d (0P

w-als)  wale) oralar)

;‘fz_i:f(@)+MZz<e)]’ %:_)\f,(e)_AZ(HQ)Z’(H)j
1) = MOZ00)

Need to find A\(0) = Ay so that 6(0) =0, 0(t;) = 2.
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Some Useful Results
e The Hamiltonian function

H0.X) = M(6) + X [2(0)

conserved on trajectories for Euler-Lagrange eqns

@ Theorem: Suppose f(0) >0 and Z(0) =0, as is
commonly the case for neurons. Then for any
t, > 0, an optimal [(t) exists and is unique.
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Some Useful Results

definition: An intrinsically oscillatory neuron is one which
fires periodically in the absence of input ().

phase reduction = f(f) =w > 0, period T = 27 /w.
e For intrinsically oscillatory neurons
t1 — T)w*Z(wt — 27t(ty — T) /(T
](t) _ _( 1 )w ((";W 7T2( 1 )/( 1 >)—|—O(<t1—T>2).
IAGIRL

That is, for small |t; —T'| the optimal current /(¢) is
proportional to Z(-).
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Example 1: f(0) =w, Z(0) = Z;sin 0

For w = Z; =1, phase space for Euler-Lagrange eqns:
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Example 1: f(0) =w, Z(0) = Z;sin 0

Optimal /(t) for different values of t;

I

3

16



Example 1: f(0) =w, Z(0) = Z;sin 0

Small |t; — T'| approximation

0.1

] 0.05r

-0.05|
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solid: from shooting method
dashed: approximation
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Example 2: Hodgkin-Huxley equations

model for generation of action potentials for squid
giant axon, based on dynamical interplay between
ionic conductances and electrical activity

for injected baseline current [, = 10, fires periodically
with T = 14.63 ms

Z(6)

0.2
0.1

0

-0.1F

-0.2 ' ' ' ' ' ' v

0 1 2 3 4 5 6

18



Example 2: Hodgkin-Huxley equations
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Example 2: Hodgkin-Huxley equations

Optimal /(t) for different values of t;
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Example 2: Hodgkin-Huxley equations

Small |t; — T'| approximation

solid: from shooting method
dashed: approximation
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Example 2: Hodgkin-Huxley equations

Comparison to full Hodgkin-Huxley equations:

® Choose ¢

e Inject optimal /(¢) found from phase model into full
equations up to time ¢,

e /(t)=0 for t > t;

e Compare time neuron fires to t;
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Example 2: Hodgkin-Huxley equations

Using /(t) from phase model works well for full Hodgkin-
Huxley equations for t; =~ T
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Optimal /(¢) for Minimizing Time of Firing

Suppose want to get neuron to fire as soon as
possible, subject to constraint

I(t)| <1Vt

In time dt, phase advances by
do = f(0)+ Z(0)I(t)|dt.

To maximize df at each time step, take

0= o~ { 1y e 200020

“bang-bang control”
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Feedback
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Feedback Control

Controller

© ©

©

= ===

Neural Network

Challenges:
e all we can measure is voltage
e unknown network topology

e non-identical neurons, non-identical coupling
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Feedback Control

A Simplified Problem:

e identical uncoupled phase oscillators,
each with input/output

Controller

9L

006

= =] =] =

Neural Network



Feedback Control

Desynchronize population by
controlling groups of neurons to have
“equally staggered” reference trajectories

A AN
NN AN,

t

cf. Tass et al

= Control of single neurons
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Feedback Control

e suppose PRC for neuron is known
e event-based control: only detect when neuron fires

e charge balance constraint:

/ T di=0  I(6) — ()
0

=0
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Reference Trajectories and Errors

A0 = {@—Hr—sgn(é’—er)%r, for [0 — 0, >n

—mT < A <7
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Intuitive ldea

df
S =wt Z(0)u(t)

If A6 <0, want to speed up neuron
e take u(t) <0 when Z(0) <0
e take u(t) > 0 when Z(6) > 0

If AG > 0, want to slow down neuron
e take u(t) > 0 when Z(0) < 0
e take u(t) < 0 when Z(4) > 0
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Theorem

For 6(0) =0,
Z(0) = —sin(0)
cAO ,  for 0<t<t,/2
u(t) =< —cAf, for t,/2 <t <ty
0 . otherwise,
L 21 — |A0|/2
S W )

the phase error of the oscillator will be a contraction
in the limit of small, positive c.
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Proof

6 (rad)

Use PRC bounds, Gronwall’s Lemma to bound the solution.
Show contraction for all Af € (—m, 7).
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An Example
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Impulsive Control Law

Definitions
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Impulsive Control Law

Two appropriately timed o-function inputs:

w(t) = a(—0(t — 1)) + 8(t — t5))

where

A0
Zmax _ me

1
ty = —, ty = _(6 - meﬂ)a u =
W

S

e reduces phase error to zero

e problem: control input may be too large
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Impulsive Control Law
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Quasi-Impulsive Control

A =7/2
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Quasi-Impulsive Control

Theorem: For a range of control parameters, the
phase error map will be a contraction.

0 ‘ ‘ ‘ TT ‘ ‘ ‘
—TT —-T1/2 0 /2 TT —TT -T1/2 0 /2 T
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Conclusions

Optimal /(t) for specified time of firing ¢,
e for typical neuron models, exists and is unique

e for intrinsically oscillatory neurons and t;
approximately equal to natural period,
[(t) proportional to phase response curve Z(0)

Event-based feedback control

e impulsive, quasi-impulsive, ---

Future Work :

e control of real neurons, collaboration with Tay Netoff
(Minnesota)

e networks
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Postdoc Positions at UCSB

e Postdoc #1, joint with Francesco Bullo

— collective decision-making strategies
—multi-agent stochastic search algorithms

e Postdoc #2

—dynamics of individual and coupled oscillators,
including neuroscience applications
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Existence and Uniqueness of Optimal /()

Theorem
Suppose f(0) > 0, Z(0) =0, so that Hy = f(0)\¢. Then
for any t; > 0, an optimal /() exists and is unique.

Proof

. /t1 b /‘27T d6 27 46
o o f(60) +A[Z—W VIFO)2+[Z(0)]*Hy

Hy— oo =t — 0, Hy— max (— [f(H)] /1Z(0)] ) =t — 00

Differentiating, we have

o, 1 [7 Z(0)]2d6 ot
/0 ([f(9)]2+[2(9)]2Ho)3/2<0 - 8Ao<0

OH, 2
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Example 2: Theta Neuron Model

2_5:1+c039+(1—(3086’) (I(t)+ 1),

I, > 0: superthreshold Type I neuron;
fires periodically with period 7/+v/I, when I(t) =0

I, < 0: subthreshold Type I neuron;
does not fire without /(%)

f(0) =14 cos + I(1 — cosb)
Z(0) =1—cosb
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Example 2: Theta Neuron Model
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Example 2: Theta Neuron Model

Optimal [(t) for I, = —0.25,t; = 30
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