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Chapter 5

Electrotonic Filtering

INTRODUCTION

Chapters 2 and 4 dealt with patterns of current flow in neurons

without considering the sources of the currents.  This and the following

several chapters will discuss synapses as a source of currents that flow into

and out of neurons.  Most neurons receive thousands, or even tens of

thousands, of synapses.  It will ultimately be necessary to think about how all

of these currents interact.  However, it will be easiest to start by looking at

currents that are generated by a single synapse positioned somewhere on

the surface of the neuron. Let’s begin by looking at how synaptic currents

can be incorporated into cable models of neurons. The fundamental work in

this area was done by Wilfrid Rall at the National Institutes of Health.  Segev

et al. (1994) have prepared a compendium of Rall’s papers.

SYNAPTIC CURRENTS IN LINEAR CABLES

To get a feel for how synapses interact with the passive electrotonic

structure of a neuron, let’s think about a chemical synapse situated at

position, x , on a cable with constant diameter, d , length, l , and uniform

biophysical parameters, rm , cm  and ra  (Fig. 5-1A).  The synapse generates a

synaptic current, Isyn(x,t), that flows through the membrane.  This is a

postsynaptic current  (PSC).  The current passing through the resistance of
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the membrane produces a change in membrane potential that is called a

postsynaptic potential (PSP).  Depending on the properties of the synapse,

the effect of its activation will be to depolarize the cylinder and move its

membrane towards zero, or to hyperpolarize the cylinder and move its

membrane away from zero (Fig. 5-1B).  The current is called an excitatory

postsynaptic current (EPSC) in the first case and an inhibitory postsynaptic

current (IPSC) in the second.  The resulting PSPs are an excitatory

postsynaptic potential (EPSP) or an inhibitory postsynaptic potential (IPSP),

respectively.  The problem is:  given the electrotonic structure of the

cylinder and the properties of the PSC, predict the resulting PSP.  

We can approach the problem by thinking of the cable as a "system" or

"black box" which is specified by its input-output relationships (Fig. 5-1C).

Imagine some input -- the synaptic current, I( X,T) , in this case -- is provided

to the system.  (Note that we have switched to normalized coordinates,

X = x / , T = t / ).  It produces an output from the system or box in the form

of a voltage transient, V(0,T) , that is recorded by an electrode at the origin

of the coordinate system (corresponding to the soma of the cell).  The

problem stated in mathematical terms is to predict V(0,T)  given I( X,T) .  We

think of the system as a filter (or mathematical operator) that transforms

the input into the output.   Predicting the voltage transient involves two

different steps: first, characterize the synaptic current and, second,

characterize the input-output relationship of the system.
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Figure 5-1.  Synapse on a linear cable.  A.  A synaptic current, Isyn(x,t), is
situated at a distance, x, from the recording site at the origin.  V(0,t) is the membrane potential
recorded at the origin.  The cable has a diameter, d, and a length, l.  B.  An excitatory
postsynaptic current (EPSC) produces an excitatory postsynaptic potential (EPSP).  An
inhibitory postsynaptic current (IPSC) produces an inhibitory postsynaptic potential (IPSP).
C.  The cable shown in A is transformed to electrotonic coordinates.  X is electrotonic distance
and L is electrotonic length.  The sketch to the right symbolizes the cable as a “black box” which
is represented by the function, h(T).
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Characterizing synaptic currents

Even the small currents generated by active synapses can be

measured reliably with the amplifiers and oscilloscopes available for

electrophysiology experiments.  The instruments are used in two different

ways or modes.  The experiments discussed in Chapter 2 all involved injecting

a known current into a cell and measuring the resulting voltage transient.

This is called current clamp mode because the injected current is being

controlled or “clamped” to some specific value.  When the goal is to measure

the current resulting from either synaptic activity or the activity of voltage-

gated channels, the experiment is carried out in voltage-clamp mode.  The

voltage is clamped, or controlled, in this case.  Voltage clamp allows the

investigator to measure currents produced in the cell so the properties of an

individual current -- generated, for example, by synaptic activity -- can be

analyzed quantitatively.  

Such studies are based on the properties of an equivalent circuit that

represents the membrane of the cell (Fig. 5-2).  The concept of an

equivalent circuit was introduced in Chapter 3 and Kirchoff's law was used to

write the relationship between currents flowing through the cell membrane.

If a synaptic current, Isyn , is added, Kirchoff's law becomes

(5-1)                                       IC + IR + Isyn = 0   .

Using the relationships for the capacitive current, Ic , and resistive current,

IR , of the membrane (Equations 2-13 and 2-14) we have
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Figure 4-2.  Equivalent circuit including a synapse.   A chemical synapse is
represented as a variable conductance, gsyn(t) in series with a battery, Esyn.  The membrane
resistance, Rm, and capacitance, Cm, are arranged in parallel, as they were in Chapters 2 and
3.

 (5-2) C
dV

dT
+

V

R
+ Isyn = 0   .

This equation highlights the problem posed by experimental attempts to

measure the synaptic currents.  The current flowing through the active

synapses causes a change in the membrane potential, V(X,T ), but both the

capacitive and resistive currents depend upon V(X,T ).  The currents interact
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with each other and confound attempts to measure one current in isolation

from the others.  

A way around this is to keep the membrane potential constant using

special voltage-clamp circuits that are incorporated into all modern

intracellular recording amplifiers.  The experimenter then chooses a holding

potential  for the membrane and the amplfier maintains the membrane at the

specified voltage.  The capacitive current depends upon the time derivative

of the voltage and becomes zero if the voltage is held constant.  In practice,

it is often difficult to hold the voltage absolutely constant if there is a rapid

and large voltage fluctuation (such as that produced by an action potential).

The voltage transient produces an artifactual capacitive transient, but there

are technical ways to minimize the difficulty.  The resistive current also

depends upon the membrane voltage, but becomes a constant if the

membrane voltage is held constant.  It can then be subtracted from the

measured current.  The practical details of carrying out voltage clamp

measurements are discussed in a variety of textbooks and manuals (e.g.

Dempster, 1993).

The effect of voltage-clamping the cell’s membrane is that Equation

(5-2) is simplified because the capacitive current becomes zero and the

resistive current is a constant.  The synaptic current is the only time-

varying current that remains.  EPSCs are normally currents that flow from

the extracellular space into the cell and are shown by convention as down-

going currents in experimental traces.  IPSCs are normally currents that

flow out of the cell into the extracellular space and are shown as up-going

traces.  We will see later in this chapter that the direction of current flow
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actually depends upon the value of the membrane potential at the time the

synapse is active.

Figure 5-3 shows examples of EPSCs and IPSCs recorded from several

different types of cells.  PSCs are clearly not all the same.  They have

waveforms (Fig. 5-4) that vary in amplitude and shape due to factors

discussed below.  However, they generally rise to some maximal value

referred to as the amplitude of the wave form.  PSCs typically have

amplitudes on the order of 10-12 amperes or picoamps (pAs).  The time

required for the current to reach its maximal value after its onset also

varies.  This is the time-to-peak or rise time.  PSCs have rise times that

vary from 10s or 100s of µsec to msec, depending on the type of synapse

creating the current.  Obtaining an accurate value for a rise time can be

problematic because a PSC usually does not deviate sharply from the

baseline of the recording, making it difficult to accurately identify the onset

of the current.  Rise times are, therefore, often reported as 10 % - 90 % or

20 %-80 %  rise times.  These are obtained by finding the maximal value of

the waveform and then measuring the times at which the waveform reaches

10% and 90 % or 20 % and 80 % of its maximal value.  Since PSCs vary in

width, the half widths of the waveforms are often measured.  The half width

of a waveform is its width measured at its half-maximal value.  Narrow

waveforms have short halfwidths; broad waveforms have long halfwidths.

Finally, the falling phase of the waveform can be described by one or more

time constants.  They are obtained by measuring the amplitude of the

waveform at a series of times during its falling phase.  The time constants

are obtained from this plot in a way analogous to the analysis described in

Chapter 4 for membrane and equalizing time constants.
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Figure 5-3.  Examples of postsynaptic currents and potentials.   A.
Excitatory postsynaptic currents from rat hippocampal cells.  Two superimposed traces show a
fast and a slow current.  From Spruston et al. (1995).  B.  Inhibitory postsynaptic current
from a rat CA1 hippocampal pyramidal cell.  From (Roepstorff and Lambert, 1994).  C.
Excitatory postsynaptic potential from a pyramidal cell in turtle visusal cortex.  D.  Inhibitory
postsynaptic potential with fast (a) and slow (b) components from a pyramidal cell in turtle
visual cortex.
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Figure 5-4.  Parameters of postsynaptic currents and potentials.  The
trace is a postsynaptic current or potential.  The amplitude (A) is measured from the base line
to the maximum point on the trace.  The halfwidth (HW) is the width of the trace measured at
50 % of its amplitude.  The time-to-peak (TTP) is the time required for the trace to reach its
maximal amplitude.

One goal for this chapter is to understand factors leading to variations

in PSCs and how their properties affect the integrative properties of the

neurons.  All that is required for the moment, however, is a way of

describing a PSC by an analytic expression that can predict its interaction

with the electrical properties of the neuron.  Two such expressions are

widely used (Fig. 5-5).  The first is to represent PSCs as alpha functions  of

the form

(5-3)       Isyn(t) = Imax te− t

where Imax  is the maximal value of the current.  To understand alpha

functions, notice first that Equation (5-3) reduces to the simple linear
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equation, Isyn(t) = t , for small values of t  because the exponential term is

then approximately e0 = 1.  The alpha factor determines the initial rise of the

waveform.  A small value of alpha produces a slowly rising synaptic current;

a large value produces a rapidly rising synaptic current.  The alpha factor

also determines the time-to-peak of the synaptic current.  To see this, recall

that an extreme value of a function occurs when its first derivative equals

zero.  We can calculate the time at which Equation (5-3) reaches its

maximum value by finding the first derivative of Isyn(t)  and setting it equal to

zero

(5-4)
dI syn(t)

dt
= Imax t

d

dt
e− t + e− t d

dt
t 

 
 
 

= Imax − 2te − t + e− t[ ] = Imax e− t − t +1[ ] = 0

and

(5-5)    t = 1  .

Thus, the time-to-peak of the alpha function is equal to − 1.  Finally, notice

that alpha also is a time constant that determines the time course of the

falling phase of the synaptic current.  Alpha functions closely resemble the

waveforms of many PSCs, and a specific PSC can be represented by

choosing the correct value of − 1.  
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Figure 5-5.  Alpha and dual exponential functions.  A.  An alpha function.  B.
Two exponential functions with different time constants.  C.  The dual exponential function
obtained by subtracting one exponential from the other.  Imax is the maximal amplitude of the
synaptic current.  α is the parameter of the alpha function.  The two τs are the time contants of
the exponential functions.
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The drawback to representing synaptic currents by alpha functions is

that the choice of alpha specifies three features of the waveform that

might actually require independent values.  Since many PSCs have falling-

phase time constants that are independent of their times-to-peak, not all

synaptic currents can be represented as alpha functions.  A more flexible

choice is to represent synaptic currents as a difference of two exponential

functions

(5-6)       Isyn(t) = Imax e− t / 1 − e−t / 2[ ]   .
You should find the first derivative of Equation (5-6) and show that the time-

to-peak of a dual exponential function depends on both 1 and 2 .  Dual

exponential functions, thus, provide two different parameters that can be

chosen independently of each other and can accurately represent a wider

range of PSCs.

Now we have a way of representing synaptic currents and the next

step is to find a way to represent the properties of the system, or neuron.

Impulse response functions The key to describing the input-

output relationships of neurons represented by cables is that the cable

equation describes a linear system.  We have already used this property to

our advantage in Chapter 2 to construct general solutions to the cable

equation, and we use it now to describe the response of a cable to a synaptic

current by viewing the synaptic currents as a series of simpler currents.

Suppose we approximate the synaptic current as a series of square current
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pulses of varying amplitudes (Fig. 5-6A).  Since the system is linear, the

response of the cable to the series of pulses will equal the sum of its

responses to each individual pulse.  The difficult problem of calculating the

response of the cable to a time-varying current is reduced to the problem of

calculating its response to a square current pulse.  There are obvious errors

in approximating the synaptic current as a series of square current pulses if

the individual pulses are wide.  The best approximation will be obtained by

making the individual current pulses as narrow as possible and ultimately

using the rules of calculus to take a limit as the width of the pulse

approaches zero.  It is natural, then, to define the response of the system

to a current pulse that occurs in an infinitely small time period.  

We can do this by defining a pulse with an amplitude that approaches

infinity as its width approaches zero.  Such a pulse is represented

mathematically by a Dirac delta function, δ(t), (Fig. 5-6B).  (The Dirac delta

function should not be confused with the Kronecker delta function introduced

in Chapter 4.)  You can think of the Dirac delta function as a square current

pulse with infinitely small width and infinitely large amplitude.  The response

of the system to a Dirac delta function is a function, h(t) , called the impulse

response function (Fig. 5-6C).  Impulse response functions can be measured
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Figure 5-6.  Delta and impulse response functions.  A.  A rectangular pulse
with amplitude, A, and width ∆x.  B.  A Dirac delta function, δ(xo), results from taking the
limit as A approaches infinity and ∆x approaches zero  C.  An impulse response function, h(t),
results from using a delta function as an input to the system.  The graphs to the right show the
time courses of the delta function and the resulting impulse response function.

experimentally by measuring the voltage transient produced by a current

pulse that is much smaller than the time constant of the system. 
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An important property of linear systems is that the response, y(t) , of

the system to any time-varying input, x(t) , can be predicted by evaluating

the convolution integral

(5-7) y(t) = h(u)x(t − u)du
0

t

∫   .

The input function is said to be convolved with the impulse response

function.  Notice that the integration is carried out with respect to the

integration variable, u , rather than time, t .  The response of the cable to a

synaptic current can be obtained by convolving the synaptic current with the

impulse response function of the cable

(5-8)        V(t) = h(u)Isyn(t − u)du
0

t

∫   .

because the cable is a linear system.

To understand where the convolution integral comes from, let’s do a

thought experiment in which the membrane bounding an isopotential cylinder

has no capacitance (Fig. 5-7A).  The only current term in the membrane

equation is then the resistive term, which is governed by Ohm's law.  The

voltage response to a very brief current pulse of duration, ∆u1 , at time ti  is

given by V(t ) = IRN ∆u1 , where RN  is the input resistance of the cylinder and I

is the current flowing through the membrane per unit time.  Because the

membrane is purely resistive, it has no history dependence or memory.  If we

take the limit as ∆u1 → 0 , we find that the response of the system to an

infinitely short pulse at time, t1 , is V(t) = IRN (t1).  If we subject the system to
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a train of pulses with durations, ∆u1 , ∆u2 , ..., ∆uk  at times ui, u2 , ..., uk , then

the response of the system is

(5-9)    V(t) = IRN (ui
i =1

k

∑ )   .

The situation changes when capacitance is put back into the system

(Fig. 5-7B).  We know from Equation (2-29), that the response of the system

to a brief current pulse at time, to , is V(t) = I(t0)∆uRNe−t / m .  We can find the

response of the system at each of two pulses presented separately in the

same way.  Since the system is linear, the response to both pulses

presented simultaneously will equal the sum of the individual responses.  A

technical problem, however, is that we need a way to express both pulses in

the same time frame.  We can do this by measuring time with the dummy

variable, u .  Then, the response of the system to an input of duration ∆u at

u  is I(u)∆uRN e− u / m .  If we express the input current in terms of the variable,

u , as I(t − u) , the response of the system to inputs at times u1 , u2 , ...,uk = t

will be given by    

(5-10) V(t) = RNe− ui / t m

i =1

k

∑ I(t − ui)∆u = h(ui)I(t − ui)∆u
i =1

k

∑    .

The convolution integral (Equation 5-8) results from taking the limit as

∆u → 0 .  It represents the synaptic current as an infinite number of infinitely

short current pulses, and calculates the membrane voltage at time t  by

adding together the voltage transients resulting from all of the current

pulses that occurred at time values u ≤ t .  We can calculate the voltage

transient produced in the cylinder by any synaptic current (as long as we can
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represent it by an analytic function, like an alpha or dual exponential

function) if we also have an analytic expression for the impulse response

function of the cylinder.  

We are almost ready to calculate the voltage transients produced by

synaptic currents in cylinders, but it will be helpful to first digress and

develop an additional mathematical tool.

Digression on Laplace transforms

Transforms  are mathematical entities that change a function of one

variable into a function of another variable.  This is in contrast to operators,

which change a function, but do not change its variable.  The Laplace

transform  is a specific type of transform that changes a function from one

independent variable (often time, t ) to a new variable, s .  The transform

expresses the function in the Laplace transform domain rather than the

time domain.  The transform is defined by the following integral

(5-11) y(s) = e −st Y(t)dt
0

∞

∫

where Y (t ) is some function of t  and y(s) is the Laplace transform  of the

function.  The Laplace transform of Y(t) is also written as L{Y (t )}=Y (s).  

Laplace transforms of many functions are available in mathematical

tables, but let’s look briefly at some simple examples.  If Y(t ) =1 ,
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Figure 5-7.  Response of a linear system to a sequence of delta function

inputs.  A.  The top graph shows a series of delta function current inputs at a sequence of three
times.  The bottom graph shows the response of a linear system to these inputs as a function of
time.  Because  the system has no capacitance, or memory.  Each delta function input produces a
delta function output.  B.  The top graph, again, shows a sequence of delta function inputs.  In this
case, the system includes a capacitor which gives the system a memory, so the response
produced by each successive input sums with preceding responses.
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 (5-12) L{1} = e −st

0

∞

∫ (1)dt =
−1

s
e− st

0
∞ = 0 −

−1

s
 
 

 
 =

1

s
 .

If Y(t) = a , where a  is a constant, y(s) = a / s .  A slightly more complicated

function is X(t) = eat , where a  is a constant.  The Laplace transform is

(5-13)    L{e at} = e −st

0

∞

∫ (e at )dt = e −( s− a)t

0

∞

∫ dt =
1

s − a

An important relationship is that the Laplace transform of the Dirac delta

function is 1

(5-14)        L{δ(t)} = e −st (t)dt = 1
0

∞

∫   .

This reinforces the idea that the delta function is a unit input to a system.

Finally, it is possible to show that the Laplace transform of the derivative

dY (t) / dt  is

(5-15)      L{dY (t) / dt } = sy( s) − Y(0)

where Y(0)  is an initial value that is specified by the problem.  

To see how Laplace transforms can be helpful, consider the simple

ordinary differential equation dV (t)/ dt = −V(t)/  for the initial condition

V(0) = Vo  at t = 0.  Taking the Laplace transform of both sides of the equation



154

(5-16) L{
dV (t)

dt
} = L{

−V (t)
}

(5-17) sv(s) − V(0) =
−v(s)

  .

Rearranging this equation and solving it for v(s)

(5-18) v(s) =
Vo

s +1/
  .

It is necessary now to convert this equation from the Laplace

transform domain back into the time domain.  This involves using the inverse

Laplace transform  which is defined by

(5-19) L -1{y(s)} = Y(t)  .

In this case, it is clear from Equation (5-14) that the inverse Laplace

transform of 1/( s − a)  is the exponential function eat .  Thus,

(5-20) L-1{v(s)} = V0e
−t /   .

Encouragingly, this is the same solution we obtained in Chapter 2.

PSPs in an isopotential cylinder  

We are now in a position to find the impulse response function for an

isopotential cable using Laplace transform methods.  Knowing the impulse

response function will allow us to calculate the waveform of PSPs produced
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by known PSCs.  It simplifies the algebra if we work in terms of normalized

coordinates, X  and T .  The cable equation simplifies to

(5-21)
dV (T)

dT
+ V(T) = 0 .

in this case because the cable is isopotential and the spatial derivative

vanishes.  The two terms in the equation represent the resistive and

capacitive currents through the cable's membrane.  The problem is to

calculate the response of the membrane to a depolarizing impulse current

represented by − (T )Io , where, Io , is the magnitude of the current per unit

time.  This adds a new term to the membrane current, so Equation (5-21)

becomes

(5-22)
dV (T)

dT
+ V(T) − (T)Io RN = 0  

where RN  is the total resistance of the cable.  We transform this equation

from the time domain to the Laplace transform domain by taking the Laplace

transform of each term in the equation

(5-23)              L{
dV (T)

dT
} + L{V(T ) } + L{ (T)IoRN } = 0

and

(5-24)           sv(s) − V(0) + v(s) + Io RN = 0  .
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If we use V(0) = 0  at T = 0 , it is easy to rearrange this equation and solve for

v(s)

(5-25) v(s) =
Io RN

s + 1

We can then find V(T)  by taking the inverse Laplace transform of both sides

of Equation (25) and using Equation (4-13)

(5-26)  V(t)    = L-1{v(s)} = L-1{
IoRN

s +1
} = IoRN e−T  = IoRN e−t / m   

Since V(t)  is the response of the system to a delta function input, it is by

definition the impulse response function for the system.  This calculation

shows formally what we guessed should be the case:  the impulse response

function for the isopotential cylinder is h(t) = RNe−t / .

We can now model an input PSC as an alpha or dual exponential function

and calculate the waveform of the resulting PSP by convolving the input

function, Isyn(t) , with the impulse response function, h(t) = RNe−t / m .  We

remember to put the history dependence of the membrane into the integral

by using the integration variable, u :

(5-27)       V(t) = RN

0

t

∫ e−u / mI syn(t − u)du  .

Evaluation of the integral is not very difficult when either alpha or dual

exponential functions are used as input functions.  To get a general idea of

how a synaptic current interacts with the passive membrane of the neuron,
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let’s model the synaptic current by the function Isyn(t) = −Imaxe
− t / syn .  The minus

sign indicates that the current is inwards and depolarizes the membrane. Imax

is the amplitude per unit time of the current.  This synaptic currrent turns

on instantaneously (or at least very quickly relative to the membrane

constant) and then decays exponentially with a time constant, s .  This is a

reasonable approximation to a synaptic current because the time course by

which ligand-gated receptors are activated is usually less than a millisecond,

so a synaptic current rises almost instantaneously as compared to the

membrane time constant (which is on the order of several milliseconds).  We

substitute the synaptic current and impulse response function into the

convolution integral and do the calculation

(5-28a)    V(t) = RN e− u / m[ ]
0

t

∫ − Imaxe
− ( t −u )/ syn[ ]du

(5-28b) = −ImaxRNe− t / s Exp − s − m

s m

u
 

  
 

  
0

t

∫ du

(5-28c) = ImaxRNe −t / s m s

m − s

 

  
 

  Exp − s − m

s m

u
 

  
 

  
 
 
 

 
 
 

0
t

(5-28d) = Imax RNe−t / s m s

m − s

 

  
 

  Exp − s − m

s m

t
 

  
 

  −1
 
 
 

 
 
 

(5-28e) = Imax RNe−t / s m s

m − s

 

  
 

  e− t / m e+t / s − e− t / se+t / s{ }

(5-28f)   V(t) = ImaxRN
m s

m − s

 

  
 

  e
−t / m − e− t / s[ ]
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Figure 5-8 shows plots of the PSC and the resulting PSP.  Notice that the

waveform of the voltage transient is significantly different from that of the

synaptic current.  Important features are that the sign of the PSP is

opposite that of the PSC, the onset of the PSP is delayed relative to that of

the PSC and the PSP has a much longer rise time than does the PSC.  The

second two effects are due to the membrane capacitance which appears in

Equation (5-28f)  through the time constant m = RmCm .  The amplitude of the

PSC and PSP are also different due to the input resistance factor in the

impulse response function.  The conclusion from this analysis is that the

membrane of the cylinder transforms the waveform of the input current,

changing its amplitude, delaying its onset and lengthening its rise time.  This

transformation is called electrotonic filtering.

PSPs in infinite and finite cables

A comparable approach can be used to determine the impulse response

function for infinite and finite cables. The waveforms of PSPs in these

cables can then be calculated by convolving the impulse response functions

with an input function (Jack and Redman, 1971; Walmsley and Stuklis, 1989).

The mathematics becomes more complex and we will omit the calculations,

but interested readers are referred to Jack and Redman (1971).  The

principal conclusion is that the impulse response function and PSPs depend

on the electrotonic distance of the input current from the recording
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electrode in both cases and on the electrotonic length of a finite cable.  For

the infinite cable,

(5-29)         h(t) = RN

1

T
Exp

− X2 − 4T 2

4T

 
  

 
           T > 0 .

An alpha function can be used to describe the synaptic current, and the

voltage transients produced in a cable calculated by convolving the impulse

response function in Equation (5-29) with the alpha function.

SYNAPTIC CURRENTS IN COMPARTMENTAL MODELS

Calculating PSPs produced by synaptic currents becomes more

cumbersome in complicated cases and is generally impractical for branched

cables.  It is generally best in these cases to rely upon compartmental

models of neurons to study electrotonic filtering.  Including synaptic

currents in compartmental models is a relatively simple matter that involves

adding an additional limb to the equivalent circuit for each compartment that

receives a synaptic input.  Figure 5-10A is the equivalent circuit for an

isopotential compartment that contains a synapse.  As before, the

membrane is represented by a resistor, with conductance g l , and a capacitor

in parallel.  The resting membrane potential is represented by a battery with

a reversal potential of Vr .  The synapse is represented by a variable resistor

(shown by a resistor symbol with an arrow through it) in series with a

battery.  The resistor (or conductor) is variable because the pore in the

receptor-channel complex will be closed in the absence of transmitter and
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will result in an infinite resistance.  As transmitter binds to the receptor,

the channel opens, ions

     

Figure 5-8.  Electrotonic filtering.  The top trace is an EPSC resulting from
activation of a synapse on an isopotential compartment.  The bottom trace is the EPSP obtained
by convolving the input current with the impulse response function for an RC circuit.

begin to flux through the channel and the resistance decreases.  This

synaptic current can be represented by the product of two factors:  



161

(5-30) I syn (t) = gsyn (t) V (t) − Vsyn[ ]  .

The first factor is the synaptic conductance, g syn (t) = g g(t) .  It is the product

of a maximal conductance, g , which is the conductance when all of the

receptors in the membrane are open and a function, g(t), that specifies the

time course of the synaptic conductances.  It gives the fraction of channels

that are open at time, t .  Like synaptic currents and potentials, g(t) can be

represented as an alpha function or a difference of two exponentials.  Since

the compartment is isopotential, all of the individual channels in the

compartment’s membrane can be lumped together.  The second factor is a

driving potential, V(t) − Vsyn , where V(t)  is the membrane potential of the

compartment and Vsyn  is the Nernst potential for the receptor.  The

membrane equation (Equation 4 – 2) for the compartment is now

(5-31) C
dV

dt
+

[V − Vr]

R
+ gsyn[V − Vsyn ] = 0.

The value of Vsyn  depends upon the ion (or ions) that flux through the

channel.  Excitatory synapses typically flux several ionic species and have

reversal potentials near 0 mV.  Inhibitory synapses typically flux chloride or

potassium ions and have reversal potentials on the order of - 70  to - 90 mV.

The reversal potential is not really a constant in that it depends upon the

local concentrations of ions inside and outside of the cell, and can actually

change with synaptic activity.

The nature of the reversal potential can be appreciated by making a

plot of the synaptic current as a function of membrane potential (Fig. 5-9B).
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Notice that the synaptic current, Isyn = gsyn V − Vsyn[ ] , is zero when the

membrane potential is held at Vsyn .  A plot of the amplitude of the resulting

PSP as a function of holding potntial is a straight line that passes through

the reversal potential on the voltage axis.  The sign of the current (negative

for an inward current and positive for an outward curent) changes or

reverses as the membrane potential is changed.  An important consequence

is that representing a synapse as a current, as we did at the start of the

chapter, introduces errors in many cases.  If the synaptic current is active

long enough to produce a change in membrane potential, then the magnitude

of the driving force will change so the amount of current that can flow

through the synapse changes with time.

The conductance change that results from activating a synapse is

typically on the order of 5 nS.  If the synapse uses an excitatory transmitter

substance and has a reversal potential of 0 mV, and if the membrane has a

resting membrane potential of - 50 mV, the maximal synaptic current would

be

(5-32) (5 nS) (-50 mV - 0 mV)  =   - 25 pA  .

If the neuron has a total input resistance of 100 MΩ, the synaptic potential

would have an amplitude of roughly 0.25 mV.  (Remember that a negative

synaptic current produces a depolarizing synaptic potential.)
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Figure 4-9.  Equivalent circuit for a chemical synapse.  A.  The synapse is
represented as a variable conductance in series with a battery.  B.  Amplitude of the PSP
produced by activation of the synapse as a function of the membrane holding potential.  The
battery produces a linear amplitude-voltage curve that crosses zero at the synaptic reversal
potential.
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POSITION DEPENDENCE VS. PASSIVE NORMALIZATION

Cable and compartmental models allow us to make predictions about

how synaptic currents interact with the passive electrotonic structure of

virtually any neuron.  These interactions can become complicated and will be

discussed in detail in several chapters later in the book.  However, a

relatively simple question is how the position of a single synapse on the

dendrites or soma of a neuron influences the shape of the PSP or PSC at the

soma of the neuron.  Plots of the voltage transients as a function of the

electrotonic distance between the synaptic input and the recording electrode

for a finite cable (Fig. 5-10) demonstrate that the amplitude of the resulting

PSP decreases as a function of electrotonic distance while the rise time and

half width become longer (Walmsley and Stuklis, 1989).  Rall carried out a

detailed analysis of the effect of synaptic position on PSP waveforms in a

series of papers (Rall, 1964; 1967a,b; 1970).  He found systematic changes

in the PSP waveforms for synapses located in different compartments of a

model neuron (Fig. 5-11A).  He referred to the amplitude, time-to-peak and

the half width of a PSP as its shape indices and found that the basic

features of PSP waveforms for a given cell could be summarized in shape

index plots.  One plot involves plotting the amplitude of individual PSPs as a

function of their rise times.  The other involves plotting rise times as a

function of half widths.  PSPs obtained from several individual neurons can

be combined in a single plot if their shape indices are first normalized by

dividing the rise times and half widths for PSPs from each individual cell by

the membrane time constant of that cell.  A plot of halfwidth vs. time-to-

peak for EPSPs simulated in a compartmental model shows that halfwidth
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and time-to-peak are positively correlated while amplitude and time-to-peak

are negatively correlated (Fig. 5-11B).  Theoretical analysis of electrotonic

filtering of synaptic currents by both linear systems and compartmental

                      

Figure 5-10.  Calculated PSPs for a finite cable.  A.  A cable model with
electrotonic length, L = 1.0.  A synaptic current is activated at electrotonic distance, X, from
the soma.  The synaptic current is modeled as an alpha function.  B.  The main graph shows the
time courses of EPSPs as a function of the electrotonic distance of the synapse from the soma.
The amplitudes of the EPSPs have been normalized to 1.0.  The inset graph plots the normalized
amplitude of the EPSPs as a function of electrotonic distance.  C.  Plots of half width as a function
of rise time for a series of values of alpha.  Both half width and rise time are in normalized
time, T.  From Walmsley and Stuklis (1989).
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modeling methods, thus, lead to the important concept that the shapes and

amplitudes of PSPs depend upon the electronic structure of the neuron and

the position of the synapse upon it.

Experimental tests of these theoretical predictions require the

activation of synapses situated at known distances from a recording

electrode.  One approach is to use cell cultures in which individual neurons

   

Figure 5-11.  Shape index plots.  A.  EPSPs produced in a compartmental model.
The model consists of a linear sequence of 10 compartments.  Synapses were activated in two
adjacent compartments.  The traces shows the EPSPs produced by synapses situated at a series of
different compartments.  The amplitudes of the EPSPs have been normalized.  B.  Plot of half
width as a function of rise time for the EPSPs shown in A.  Both parameters are expressed in
normalized time, T.  From Rall et al. (1967).

are visualized while recordings are made from specified points on the

neuron's surface.  Bekkers and Stevens (1990) carried out such an
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experiment using CA1 and CA3 pyramidal cells from neonatal rats (Fig. 5-

12).  They prepared cultures in which cell density was sufficiently low that

the dendritic fields of individual neurons could be traced.  They used whole-

cell patch methods to record EPSCs from the somata of neurons (Bekkers

and Stevens, 1989).  Synapses were activated by using a small pipette

containing hyperosmotic solutions.  The mechanism by which hyperosmotic

solutions cause the release of neurotransmitter from axonal terminals is not

certain, but it is known that local application of such solutions elicit PSCs at

restricted foci on dendrites (Bekkers and Stevens, 1989).  The preparation

could be used to record at the soma currents produced at known positions

on the dendritic tree.  The synaptic currents varied in amplitude but, on

average, conformed to the predictions of linear cable theory.  EPSCs elicited

at the soma had larger mean amplitudes than those elicited at dendritic

sites, and EPSCs elicited 90 µm from the soma were larger than those

elicited at 170 µm from the soma.  EPSCs elicited at distal sites also had

longer rise times and longer halfwidths than those elicited at proximal sites.

These findings for CA1 pyramidal cells are consistent with studies

using compartmental models.  Jaffe et al. (1999), for example, constructed

a multi-compartmental model of a CA1 pyramidal cell.  They then activated

conductances of 500 pS or 1 nS - 5 nS in each of the compartments and

recorded the amplitudes of the resulting PSPs in the soma compartment.

They found that (Fig. 5-13) the amplitudes varied significantly as a function

of the location of the synapse.  The amplitudes of PSPs resulting from

activation of 500 pS conductances along the large, primary dendrites of the

cell decreased from about 0.35 mV to about 0.05 mV.  There was, however,

relatively little variation in the amplitudes of PSPs resulting from activation
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of synapses along the secondary dendrites.  Like the experimental studies,

this analysis suggests that the effect of synapses in CA1 pyramidal cells

shows a distinct position dependence: distal synapses produce small

amplitude PSPs at the soma than do proximal synapses.  Similar results were

   

Figure 5-12.  EPSCs in hippocampal pyramidal cells.  A.  EPSCs were
recorded from the soma of a hippocampal neuron in culture while hyperosmotic solution was
used to induce synaptic currents at the soma and at 90 µm and 170 µm distant from the soma.
B.  The normalized charge measured at the soma is plotted as a function of the distance of the
active synapse from the soma.  C.  The normalized peak current is plotted as a function of
distance from the soma.  From Bekkers and Stevens (1990).

obtained with a model of neocortical pyramidal cells.  However, models of a

CA3 hippocampal pyramidal cell, a dentate gyrus pyramidal cell and

hippocampal interneurons (Chitwood et al., 1999) yielded different results.

PSP amplitude at the soma showed relatively little variation as a function of



169

Figure 5-13.  Position dependence and passive normalization.  The
efficiency of synapses placed at different points in the dendritic trees of CA1 pyramidal cells
(top) and CA3 pyramidal cells (bottom) are shown.  The anatomy of the two cells used to
construct multicompartmental models is shown on the left.  The plots on the right show the
amplitudes of EPSPs recorded at the soma in the two types of cells plotted as functions of the
distances of the synapses form the soma.  Notice that the CA1 pyramidal cell  shows a strong
position dependence for synapses while the CA3 pyramidal cell  shows a greater degress of
passive normalization.

position.  This independence of PSP amplitude on position can be called

passive normalization.  Whether the amplitudes of soma PSPs show position
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dependence or passive normalization depends upon the geometry of the cell.

Neurons, like CA1 or neocortical pyramidal cells, that have a long, relatively

untapered aprical dendrite are well approximated as cables and show position

dependence.  However, neurons whose dendritic trees do not approximate

cables and whose individual dendrites vary in diameter tend to show passive

normalization.  

One of the factors contributing to normalization is the local input

resistance of the dendrites.  Small diameter dendrites have relatively large

input resistances (because input resistance inversely proportional to

diameter).  A given synaptic current, thus, produces a relatively large

amplitude PSP as recorded at the dendrite.  The amplitude of the PSP

decreases along the length of the dendrite due to electrotonic filtering.

However, the variation in the amplitude of the PSPs at their sites of origin

tends to off set the effects of electrotonic filtering.  The functional

consequence of passive normalization is that synapses distributed over the

surface of the neuron can have approximately the same probability of

generating an action potential at the soma.   


