
Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, say 40 decibels higher
than necessary (10000 fold excess on energy basis), and then feedingthe output back on the
input in such a way as to throw away that excess gain, it has been found possible to effect
extraordinary improvement in constancy of amplification and freedom from non-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers”, 1934 [Bla34].

This chapter focuses on the analysis of robustness of feedback systems, a large
topic for which we provide only an introduction to some of thekey concepts. We
consider the stability and performance of systems whose process dynamics are
uncertain and derive fundamental limits for robust stability and performance. To
do this we develop ways to describe uncertainty, both in the form of parameter
variations and in the form of neglected dynamics. We also briefly mention some
methods for designing controllers to achieve robust performance.

12.1 MODELING UNCERTAINTY

Harold Black’s quote above illustrates that one the key usesof feedback is to pro-
vide robustness to uncertainty (“consistency of amplification”). It is one of the
most useful properties of feedback and is what makes it possible to design feed-
back systems based on strongly simplified models.

One form of uncertainty in dynamical systems is that the parameters describ-
ing the system are unknown, orparametric uncertainty. A typical example is the
variation of the mass of a car, which changes with the number of passengers and
the weight of the baggage. When linearizing a nonlinear system, the parameters of
the linearized model also depend on the operating condition. It is straightforward
to investigate effects of parametric uncertainty simply byevaluating the perfor-
mance criteria for a range of parameters. Such a calculation will directly reveal
the consequences of parameter variations. We illustrate bya simple example.

Example 12.1 Cruise control
The cruise control problem was described in Section 3.1 and a PI controller was
designed in Example 10.3. To investigate the effect of parameter variations we
will choose a controller designed for a nominal operating condition correspond-
ing to massm = 1600, fourth gear (α = 12) and speedve = 25 m/s; the con-
troller gains arek = 0.72 andki = 0.18. Figure 12.1a shows the velocityv and
the throttleu when encountering a hill with a 3◦ slope with masses in the range
1600< m< 2000, gear ratios 3 to 5 (α = 10, 12 and 16) and velocity 10≤ v≤ 40
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Figure 12.1: Responses of the cruise control system to a slope increase of 3◦ (left) and
the eigenvalues of the closed loop system (right). Model parameters areswept over a wide
range.

m/s. The simulations were done using models that were linearized around the
different operating conditions. The figure shows that there are variations in the
response but that they are quite reasonable. The largest velocity error is in the
range of 0.2 to 0.6 m/s, and the settling time is about 15 s. The control signal is
marginally larger than 1 in some cases which implies that thethrottle is fully open.
A full nonlinear simulation using a controller with windup protection is required if
we want to explore these cases in more detail. Figure 12.1b shows the eigenvalues
of the closed loop system for the different operating conditions. The figure shows
that the closed loop system is well damped in all cases. ∇

This example indicates that at least as far as parametric variations are con-
cerned, the design based on a simple nominal model will give satisfactory control.
The example also indicates that a controller with fixed parameters can be used in
all cases. Notice however that we have not considered operating conditions in low
gear and at low speed but cruise controllers are not used in these cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of parametric variations. However,
there are other uncertainties that also are important, as discussed at the end of
Section 2.3. The simple model of the cruise control system onlycaptures the
dynamics of the forward motion of the vehicle and the torque characteristics of
the engine and transmission. It does not, for example, include a detailed model
of the engine dynamics (whose combustion processes are extremely complex) nor
the slight delays that can occur in modern electronically-controlled engines (due
to the processing time of the embedded computers). These neglected mechanisms
are calledunmodeled dynamics.

Unmodeled dynamics can be accounted for by developing a morecomplex
model. Such models are commonly used for controller development but substan-
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Figure 12.2: Unmodeled dynamics in linear systems. Uncertainty can be represented using
additive perturbations (left), multiplicative perturbations (middle) or feedback perturbations
(right). The nominal system isP and∆P represents the unmodeled dynamics.

tial effort is required to develop the models. An alternative is to investigate if the
closed loop system is sensitive to generic forms of unmodeled dynamics. The ba-
sic idea is to describe the “unmodeled” dynamics by including a transfer function
in the system description whose frequency response is bounded, but otherwise un-
specified. For example, we might model the engine dynamics in the cruise control
example as a system that quickly provides the torque that is requested through
the throttle, giving a small deviation from the simplified model, which assumed
the torque response was instantaneous. This technique can also be used in many
instances to model parameter variations, allowing a quite general approach to un-
certainty management.

In particular we wish to explore if additional linear dynamics may cause dif-
ficulties. A simple way is to assume that the transfer functionof the process is
P(s) + ∆P(s) whereP(s) is the nominal simplified transfer function and∆P(s)
represents the unmodeled dynamics. This case is calledadditive uncertainty. Fig-
ure 12.2 shows some other cases to represent uncertainties in a linear system.

When are Two Systems Similar?
�

A fundamental issue in describing robustness is to determine when two systems
are close. Given such a characterization, we can then attempt to describe robust-
ness according to how close the actual system must be to the model in order to
still achieve the desired levels of performance. This seemingly innocent problem
is not as simple as it may appear. A naive idea is to say that twosystems are
close if their open loop responses are close. Even if this appears natural, there are
complications, as illustrated by the following examples.

Example 12.2 Similar in open loop but large differences in closed loop
The systems with the transfer functions

P1(s) =
100
s+1

, P2(s) =
100

(s+1)(sT+1)2

have very similar open loop responses for small values ofT, as illustrated in the
top left corner of Figure 12.3a, whereT = 0.025. The differences between the
step responses are barely noticeable in the figure. The step responses with unit
gain error feedback are shown in the bottom left figure. Noticethat one closed
loop system is stable and the other one is unstable. ∇
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Figure 12.3: Determining when two systems are close. The plots on the left show the open
and closed loop responses for two processes that have nearly identical step responses in open
loop, but are very different in closed loop. The system on the right shows the opposite: the
systems are different in open loop, but similar in closed loop.

Example 12.3 Different in open loop but similar in closed loop
Consider the systems

P1(s) =
100
s+1

, P2(s) =
100
s−1

.

The open loop responses are very different becauseP1 is stable andP2 is unstable,
as shown in the top right plot in Figure 12.3. Closing a feedback loop with unit
gain around the systems we find that the closed loop transfer functions are

T1(s) =
100

s+101
T2(s) =

100
s+99

which are very close as is also shown in Figure 12.3b. ∇

These examples show that if our goal is to close a feedback loopit may be
misleading to compare the open loop responses of the system.Inspired by these
examples we will introduce a distance measure that is more appropriate for closed
loop operation. Consider two systems with the rational transfer functions

P1(s) =
n1(s)
d1(s)

and P2(s) =
n2(s)
d2(s)

,

wheren1(s), n2(s), d1(s) andd2(s) are polynomials. Let

p(s) = d1(s)n2(−s)−n1(s)d2(−s)
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Figure 12.4: Geometric interpretation of the distanced(P1,P2) between two transfer func-
tions. At each frequency, the points on the Nyquist curve forP1 andP2 are projected onto
a unit sphere of radius 1 sitting at the origin of the complex plane. The distance between
the two systems is defined as the maximum distance between the pointsR1 andR2 over all
frequencies.

and define thechordal distancebetween the transfer functions as

dν(P1,P2) =







sup
ω

|P1(iω)−P2(iω)|
√

(1+ |P1(iω)|2)(1+ |P2(iω)|2)
if p(s) has no RHP zeros

1 otherwise.
(12.1)

The distance has a nice geometric interpretation, as shown inFigure 12.4, where
the Nyquist plots ofP1 andP2 are projected on the Riemann sphere. The Riemann
sphere is located above the complex plane. It has diameter 1 and its south pole
is at the origin of the complex plane. Points in the complex plane are projected
onto the sphere by a line through the point and the north pole (Figure 12.4). The
distancedν(P1,P2) is simply the shortest chordal distance between the projections
of the Nyquist curves. The distancedν(P1,P2) is similar to |P1 −P2| when the
transfer functions are small, but very different when|P1| and |P2| are large. It is
also related to the behavior of the systems under unit feedback as will be discussed
in Section 12.5. Since the diameter of the Riemann sphere is 1, it follows that the
distance is never larger than 1.

The Vinnicombe metricor theν-gap metric(12.1) was introduced in [Vin01]
and is a natural tool to compare the behavior of two systems under closed loop
feedback. Vinnicombe also gave strong robustness results based on the metric. We
illustrate by computing the metric for the systems in the previous examples.

Example 12.4 Vinnicombe metric for Examples 12.2 and 12.3
For the systems in Example 12.2 we have

n1(s) = n2(s) = 100, d1(s) = s+1, d2(s) = (s+1)(sT+1)2
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and hence

p(s) = d1(s)n2(−s)−n1(s)d2(−s) = 100s(sT2 +T +2).

This polynomial has no roots in the open right half plane and wecan proceed to
compute the norm (12.1) numerically, which forT = 0.025 givesd(P1,P2) = 0.98,
a quite large value. To have a reasonable robustness the Vinnicombe recommended
values less than 1/3.

For the system in Example 12.3 we have

n1(s) = n2(s) = 100, d1(s) = s+1, d2(s) = s−1

and

p(s) = d1(s)n2(−s)−n1(s)d2(−s) = 100(s+1− (−s+1)) = 200s.

This polynomial has no roots in the open right half plane and wecan proceed to
compute the norm (12.1) numerically, givingd(P1,P2) = 0.02, which is a very
small value. This explains why both systems can be controlledwell by the same
controller. ∇

12.2 STABILITY IN THE PRESENCE OF UNCERTAINTY

Having discussed how to describe robustness, we now consider the problem of
robust stability: when can we show that the stability of a system is robust with
respect to process variations? This is an important questionsince the potential for
instability is one of the main drawbacks of feedback. Hence we want to ensure that
even if we have small inaccuracies in our model, we can still guarantee stability
and performance.

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant way to study the effects
of uncertainty for linear systems. A simple criterion is that the Nyquist curve is
sufficiently far from the critical point−1. Recall that the shortest distance from
the Nyquist curve to the critical point issm = 1/Ms whereMs is the maximum
of the sensitivity function andsm the stability margin introduced in Section 9.3.
The maximum sensitivityMs or the stability marginsm is thus a good robustness
measure, as illustrated in Figure 12.5a.

We will now derive explicit conditions for permissible process uncertainties.
Consider a stable feedback system with a processP and a controllerC. If the
process is changed fromP to P+∆P, the loop transfer function changes fromPC
to PC+C∆P, as illustrated in Figure 12.5b. If we have a bound on the size of
∆P (represented by the dashed circle in the figure), then the system remains stable
as long as the process variations never overlap the−1 point, since this leaves the
number of encirclements of−1 unchanged.
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Figure 12.5: Robust stability using the Nyquist criterion. The left figure shows that the dis-
tance to the critical point 1/Ms is a robustness measure. The right figure shows the Nyquist
curve of a nominal loop transfer function and its uncertainty caused by additive process
variations∆P.

Some additional assumptions are required for the analysis tohold. Most im-
portantly, we require that the process perturbations∆P be stable so that we do
not introduce any new right half plane poles that would require additional encir-
clements in the Nyquist criterion. Also, we note that this condition is conservative:
it allows for any perturbation that satisfies the given bounds, while in practice we
may have more information about possible perturbations.

We now compute an analytical bound on the allowable process disturbances.
The distance from the critical point−1 to the loop transfer functionL is |1+ L|.
This means that the perturbed Nyquist curve will not reach thecritical point−1
provided that

|C∆P| < |1+L|,

which implies

|∆P| <
∣

∣

∣

1+PC
C

∣

∣

∣
or

∣

∣

∣

∆P
P

∣

∣

∣
<

1
|T|

. (12.2)

This condition must be valid for all points on the Nyquist curve, i.e pointwise
for all frequencies. The condition for robust stability can thus be written as

∣

∣

∣

∆P(iω)

P(iω)

∣

∣

∣
<

1
|T(iω)|

for all ω ≥ 0. (12.3)

This condition allows us to reason about uncertainty withoutexact knowledge of
the process perturbations. Namely, we can verify stabilityfor anyuncertainty∆P
that satisfies the given bound. From an analysis perspective, this gives us a measure
of the robustness for a given design. Conversely, if we require robustness of a
given level, we can attempt to choose our controllerC such that the desired level
of robustness is available (by askingT to be small) in the appropriate frequency
bands.

The formula given by equation (12.3) is one of the reasons why feedback sys-
tems work so well in practice. The mathematical models used todesign control
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Figure 12.6: Robustness for a cruise controller. The left figure shows the maximum relative
error (1/|T|, dot-dashed) and absolute error (|P|/|T|, solid) for the process uncertainty∆P.
The Nyquist curve is shown in the right figure, as a solid line. The dashedcircles show
permissible perturbations in the process dynamics,|∆P|= |P|/|T|, at the frequenciesω = 0,
0.0142 and 0.05.

system are often strongly simplified. There may be model errorsand the proper-
ties of a process may change during operation. Equation (12.3) implies that the
closed loop system will at least be stable for substantial variations in the process
dynamics.

It follows from equation (12.3) that the variations can be large for those fre-
quencies whereT is small and that smaller variations are allowed for frequencies
whereT is large. A conservative estimate of permissible process variations that
will not cause instability is given by

∣

∣

∣

∆P(iω)

P(iω)

∣

∣

∣
<

1
Mt

,

whereMt is the largest value of the complementary sensitivity

Mt = sup
ω

|T(iω)| =
∥

∥

∥

PC
1+PC

∥

∥

∥

∞
. (12.4)

The value ofMt is influenced by the design of the controller. For example, it is
shown in Exercise 12.1 that ifMt = 2 then pure gain variations of 50% or pure
phase variations of 30◦ are permitted without making the closed loop system un-
stable.

Example 12.5 Cruise control
Consider the cruise control system discussed in Section 3.1.The model of the car
in fourth gear at speed 25 m/s is

P(s) =
1.38

s+0.0142
,

and the controller is a PI controller with gainsk = 0.72 andki = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertaintyusing the bound in
equation (12.3). At low frequencies,T(0) = 1 and so the perturbations can be
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Figure 12.7: Illustration of robustness to process perturbations. A system with additive
uncertainty (left) can be manipulated via block diagram algebra (center) toisolate the uncer-
tainty in a manner that allows application of the small gain theorem (right)

as large as the original process (|∆P/P| < 1). The complementary sensitivity has
its maximumMt = 1.14 atωmt = 0.35 and hence this gives the minimum allow-
able process uncertainty, with|∆P/P| < 0.87 or |∆P| < 3.47. Finally, at high
frequenciesT → 0 and hence the relative error can get very large. For example,
at ω = 5 we have|T(iω)| = 0.195 which means that the stability requirement is
|∆P/P| < 5.1. The analysis clearly indicates that the system has good robustness
and that the high frequency properties of the transmission system are not important
for the design of the cruise controller.

Another illustration of the robustness of the system is given in the right dia-
gram of Figure 12.6, which shows the Nyquist curve of the transfer function of the
process and the uncertainty bounds∆P = |P|/|T| for a few frequencies. Note that
the controller can tolerate large amounts of uncertainty and still maintain stability
of the closed loop. ∇

The situation illustrated in the previous example is typicalof many processes:
moderately small uncertainties are only required around the gain crossover fre-
quencies, but large uncertainties can be permitted at higher and lower frequencies.
A consequence of this is that a simple model that describes the process dynamics
well around the crossover frequency is often sufficient for design. Systems with
many resonance peaks are an exception to this rule because the process transfer
function for such systems may have large gains also for higher frequencies, as
shown for instance in Example 9.9.

Notice that the results we have given can be conservative. Referring to Fig-
ure 12.5, the critical perturbations, which were the basis for our analysis, are in the
direction towards the critical point. It is possible to havemuch larger perturbations
in the opposite direction.

The robustness result given by equation (12.3) can be given another interpre-
tation by using the small gain theorem, Theorem 9.4 on page 284. To apply the
theorem we start with block diagrams of a closed loop system with a perturbed
process and we make a sequence of transformations of the block diagram which
isolates the block which represents the uncertainty, as shown in Figure 12.7. The
result is the two-block interconnection shown in Figure 12.7c which has the loop
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Table 12.1: Conditions for robust stability for different types of uncertainty.

Process Type Robust Stability

P+∆P Additive |CS∆P‖∞ < 1

P(1+∆P) Multiplicative ‖S∆P‖∞ < 1

P/(1+∆P·P) Feedback ‖PS∆P‖∞ < 1

transfer function
L =

PC
1+PC

∆P
P

= T
∆P
P

.

Equation (12.3) implies that the largest loop gain is less than one and hence the
systems is stable via the small gain theorem.

The small gain theorem can be used to check robust stability for uncertainty in
a variety of other situations. Table 12.1 summarizes a few ofthe common cases;
the proofs (all via the small gain theorem) are left as exercises.

The following example illustrates that it is possible to design systems that are
robust to parameter variations.

Example 12.6 Bode’s loop transfer function
A major problem in design of electronic amplifiers was to obtain a closed loop
system that was insensitive to changes in the gain of the electronic components.
Bode found that the loop transfer functionL(s) = ksn, with −5/3≤ n≤ −1 was
an ideal loop transfer function. Figure 12.8a shows that the Bode and Nyquist
plots of the loop transfer function. Notice that the gain curve is a straight line with
slopen and that the phase is constant∠L(iω) = nπ/2. The phase margin is thus
constantϕm =−sin−1(nπ/2) for all values of controller gaink. The Nyquist curve
is a straight line from the origin. The transfer function cannot be realized with

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

−180

−90

0

|L
(i

ω
)|

∠
L
(i

ω
)

ω

(a)

−4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

ReL(iω)

Im
L
(i

ω
)

(b)

Figure 12.8: Bode’s ideal loop transfer function. Bode and Nyquist plots are shownfor
Bode’s ideal loop transfer functionL(s) = ksn, for k = 1 andn = 5/3.
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physical components, but it can be approximated over a givenfrequency range with
a rational function that can be implemented. An operationalamplifier circuit that
has the approximate transfer functionG(s) = k/(s+ a) is a realization of Bode’s
ideal transfer function withn = 1, as described in Example 8.3. Designers of
operational amplifiers make great effort to make the approximation valid over a
wide frequency range. ∇

Youla Parameterization
�

Since stability is such an essential property it is useful to characterize all con-
trollers that will stabilize a given process. Consider a stable process with a rational
transfer functionP. A system with the complementary sensitivity functionT can
be obtained by feedforward control with the stable transferfunctionQ if

T = PQ (12.5)

Notice thatT must have the same right half plane zeros asP sinceQ is stable.
Now assume that we want to obtain the complementary transferfunction T by
using unit feedback with the controllerC. SinceT = PC/(1+PC) = PQ we find
that the controller transfer function is

C =
Q

1−QP
. (12.6)

A straightforward calculation gives

1
1+PC

= 1−T,
P

1+PC
= P−PT,

C
1+PC

= Q,
PC

1+PC
= T

which are all stable. It can be shown that all stabilizing controllers for a stable
processP(s) are given by equation (12.6) for some stableQ(s). Equation (12.6)
is called aYoula parameterization: it characterizes all controllers that stabilize a
stable process. The parameterization is illustrated by the block diagrams in Fig-
ure 12.9a.

A similar characterization can be obtained for unstable systems. Consider a
process with a rational transfer functionP(s) = a(s)/b(s) wherea(s) andb(s) are
polynomials. By introducing a stable polynomialc(s) we can write

P(s) =
a(s)
b(s)

=
A(s)
B(s)

,

whereA(s) = a(s)/c(s) andB(s) = b(s)/c(s) are stable rational functions. We
have

1
1+PC0

=
AF0

AF0 +BG0
= S0

P
1+PC0

=
BF0

AF0 +BG0
= PS0

C0

1+PC0
=

AG0

AF0 +BG0
= CS0

PC0

1+PC0
=

BG0

AF0 +BG0
= T0
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Figure 12.9: Youla parameterization. Block diagrams of Youla parameterizations for a
stable system (left) and an unstable system (right). Notice that the signalv is zero in steady
state.

SinceC is a stabilizing controller the functionAF0+BG0 must have all its zeros in
the left half plane. All stabilizing controllers are now given by

C =
G0 +QA
F0−QB

(12.7)

and we have

1
1+PC

=
A(F0−QG)

AF0 +BG0

P
1+PC

=
BF0−QB2

AF0 +BG0

C
1+PC

=
AG0 +QA2

AF0 +BG0

PC
1+PC

=
AF0 +BG0

AF0 +BG0
.

Equation (12.7) reduces to equation (12.6) forF0 = 1 andG0 = 0. A block diagram
is shown in Figure 12.9b. Notice that the transfer functionQ appears affinely in
the expressions for the Gang of Four, which is very useful if we want to determine
the transfer functionQ to obtain specific properties.

12.3 PERFORMANCE IN THE PRESENCE OF UNCERTAINTY

So far we have investigated the risk for instability and robustness to process un-
certainty. We will now explore how responses to load disturbances, measurement
noise and command signal following are influenced by process variations. To do
this we will analyze the system in Figure 12.10, which is identical to the basic
feedback loop analyzed in Chapter 11.

Disturbance Attenuation

The sensitivity functionSgives a rough characterization of the effect of feedback
on disturbances as was discussed in Section 11.1. A more detailed characterization
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Figure 12.10: Block diagram of a basic feedback loop. The external signals are the com-
mand signalr, the load disturbanced and the measurement noisen. The process output
is y and the control signal isu. The processP may include unmodeled dynamics, such as
additive perturbations.

is given by the transfer function from load disturbances to process output:

Gyd =
P

1+PC
= PS. (12.8)

Load disturbances typically have low frequencies and it is therefore important that
the transfer function is small for low frequencies. For processes with constant low
frequency gain and a controller with integral action we haveGyd ≈ s/ki . Integral
gainki is thus a simple measure of attenuation of load disturbances.

To find how the transfer functionGyd is influenced by small variations in the
process transfer function we writeP asP+ ∆P and try to find the corresponding
∆Gyd. If the perturbations are sufficiently small, we can show that

Gyd +∆Gyd ≈
P+∆P

1+(P+∆P)C
≈

P
1+PC

+
∆P

1+PC

= PS+S∆P = Gyd +
Gyd

P
∆P,

where we have ignored terms that are quadratic and higher in∆P. It follows that

dGyd

Gyd
= S

dP
P

, (12.9)

where we writedGanddPas a reminder that this expression holds for small vari-
ations. The response to load disturbances is thus insensitive to process variations
for frequencies where|S(iω)| is small, i.e. for those frequencies where load dis-
turbances are important.

A drawback with feedback is that the controller feeds measurement noise into
the system. In addition to the load disturbance rejection, it is thus also important
that the control actions generated by measurement noise arenot too large. It fol-
lows from Figure 12.10 that the transfer functionGun from measurement noise to
controller output is given by

Gun = −
C

1+PC
= −

T
P

. (12.10)
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Since measurement noise typically has high frequencies, thetransfer functionGun

should not be too large for high frequencies. The loop transfer functionPC is typ-
ically small for high frequencies, which implies thatGun ≈C for large s. To avoid
injecting too much measurement noise it is therefore important thatC(s) is small
for larges. This property is called high frequency roll-off. An exampleis filter-
ing of the measured signal in a PID controller to reduce injection of measurement
noise; see Section 10.5.

To find how the transfer functionGun is influenced by small variations in the
process transfer function we expand equation (12.10) and obtain the first order
variations, which gives

dGun

Gun
= T

dP
P

. (12.11)

Note that this same expression can be also be obtained by differentiation of equa-
tion (12.10):

dGun

dP
=

d
dP

(

−
C

1+PC

)

=
C

(1+PC)2C = T
Gun

P
.

Measurement noise typically has high frequencies. Since thecomplementary sen-
sitivity function is also small for high frequencies, we find that process uncertainty
has little influence on the transfer functionGun for frequencies where measure-
ments are important.

Command Signal Following

The transfer function from reference to output is given by

Gyr =
PCF

1+PC
= TF, (12.12)

which contains the complementary sensitivity function. Tosee how variations in
P affect the performance of the system, we differentiate equation (12.12) with
respect to the process transfer function:

dGyr

dP
=

CF
1+PC

−
PCFC

(1+PC)2 =
CF

(1+PC)2 = S
Gyr

P
.

and it follows that
dGyr

Gyr
= S

dP
P

. (12.13)

The relative error in the closed loop transfer function thus equals the product of the
sensitivity function and the relative error in the process.In particular, it follows
from equation (12.13) that the relative error in the closed loop transfer function is
small when the sensitivity is small. This is one of the useful properties of feedback.

As in the last section, there are some mathematical assumptions that are re-
quired in order for the analysis presented here to hold. As already stated, we
require that the perturbations∆P be small (as indicated by writingdP). Secondly,
we require that the perturbations be stable, so that we do notintroduce any new
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Figure 12.11: Op amp with uncertain dynamics. The op amp circuit (right) is modeled
usingG(s) to capture its dynamic properties and includes a load at the output. The block
diagram (right) shows the input/output relationships. The load is represented as a disturbance
d applied at the output ofG(s).

right half plane poles that would require additional encirclements in the Nyquist
criterion. Also, as before this condition is conservative:it allows for any pertur-
bation that satisfies the given bounds, while in practice the perturbations may be
more restricted.

Example 12.7 Op amp
To illustrate the use of these tools, consider the performance of an op amp based
amplifier, as shown in Figure 12.11. We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic response of the op amp
and changes in the loading on the output. We model the system using the block
diagram in Figure 12.11b, which is based on the derivation in Example 9.1.

Consider first the effect of unknown dynamics for the operational amplifier. If
we model the dynamics of the op amp as

vout = G(s)(v+−v−)

then transfer function for the overall circuit is given by

Hv2v1 = −
R2

R1

G(s)
G(s)+R2/R1 +1

.

We see that ifG(s) is large over the desired frequency range, then the closed loop
system is very close to the ideal responseR2/R1. We can make this more explicit
by assuming thatG(s) has the form

G(s) =
b

s+a
,

a−anom

anom
< δ , bmin ≤ b≤ bmax.

The terma is the bandwidth of the amplifier andb is the bandwidth product for the
amplifier as discussed in Example 8.3.

The sensitivity function and complementary sensitivity function for the nomi-
nal dynamics are given by

S=
s+a

s+a+αb
T =

αb
s+a+αb

,

whereα = R2/R1. The sensitivity function around the nominal values tell us how
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the tracking response response varies as a function of process perturbations:

dGyr

Gyr
= S

dP
P

We see that for low frequencies, whereS is small, variations in the bandwidth or
the gain-bandwidth product will have relatively little effect on the performance of
the amplifier (under the assumption thatb is sufficiently large.

To model the effects of unknown load, we consider the addition of a disturbance
at the output of the system, as shown in Figure 12.11b. This disturbance represents
changes in the output voltage to due loading effects. The transfer functionGyd = S
gives the response of the output to the load disturbance and we see that ifSis small
then we are able to reject such disturbances. The sensitivityof Gyd to perturbations
in the process dynamics can be computed by taking the derivative of Gyd with
respect toP:

dGyd

dP
=

−C
(1+PC)2 =

T
P

Gyd =⇒
dGyd

Gyd
= T

dP
P

.

Thus we see that the relative changes in the disturbance rejection are roughly the
same as the process perturbations at low frequency (whenT is approximately 1)
and drop off at higher frequencies. However, it is importantto remember thatGyd
itself is small at low frequency, and so these variations in relative performance may
not be an issue in many applications. ∇

12.4 ROBUST POLE PLACEMENT

In Chapters 6 and 7 we saw how to design controllers by settingthe locations
of the eigenvalues of the closed loop system. If we analyze the resulting system
in the frequency domain, the closed loop eigenvalues correspond to the poles of
the closed loop transfer function and hence these methods are often referred to as
design by “pole placement”.

The design methods we used in the state space, as with many methods devel-
oped for control system design, did not explicitly take robustness into account.
In such cases it is essential to always investigate the robustness because there are
seemingly reasonable designs that give controllers with poor robustness. We illus-
trate this by analyzing controllers designed by state feedback and observers. The
closed loop poles can be assigned to arbitrary locations if the system is observable
and reachable. However if we want to have a robust closed loopsystem, the poles
and zeros of the process impose severe restrictions on the location of the closed
loop poles. Some examples are first given; based on analysis of these examples we
then describe design rules for robust pole placement.
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Figure 12.12: Observer-based control of steering. The Nyquist plot (left) and Bode plot
(right) of the loop transfer function for vehicle steering with a controller based on state
feedback and an observer. The controller provides stable operation,but with very low gain
and phase margin.

Slow Stable Zeros

We will first explore the effects of slow stable zeros, and we begin with a simple
example.

Example 12.8 Vehicle steering
Consider the linearized model for vehicle steering in Example 8.6, which has the
transfer function

P(s) =
0.5s+1

s2 .

A controller based on an observer and state feedback with theclosed loop poles
given byωc = 1, ζc = 0.707,ωo = 2 andζo = 0.707 was designed in Example 7.3.
Assume that we want a faster closed loop system and chooseωc = 10,ζc = 0.707,
ωo = 20 andζo = 2. A pole placement design gives state feedback gaink1 = 100
and k2 = −35.86 and observer gainsl1 = 28.28 andl2 = 400. The controller
transfer function is

C(s) =
−11516s+40000

s2 +42.4s+6657.9
.

Figure 12.12 shows Nyquist and Bode plots of the loop transferfunction. The
Nyquist plot indicates that the robustness is poor since theloop transfer function is
very close to the critical point−1. The phase margin is only 7◦. This also shows
up in the Bode plot where the gain curve hovers around the value 1 and the phase
curve is close to 180◦ for a wide frequency range.

More insight is obtained by analyzing the sensitivity functions, shown by full
lines in Figure 12.13. The maximum sensitivities areMs = 13 andMt = 12, indi-
cating that the system has poor robustness.

At first sight it is surprising that a controller where the nominal system has well
damped poles and zeros is so sensitive to process variations. We have an indication
that something is unusual because the controller has a zeros= 3.9 in the right half
plane. To understand what happens we will investigate the reason for the peaks of
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Figure 12.13: Sensitivity functions for observer-based control of vehicle steering.The com-
plementary sensitivity function (left) and sensitivity function (right) for theoriginal con-
troller with ωc = 10, ζc = 0.707,ωo = 20, ζo = 0.707 (solid) and the improved controller
with ωc = 10,ζc = 2.6 (dashed).

the sensitivity functions.
Let the transfer functions of the process and the controller be

P(s) =
np(s)

dp(s)
C(s) =

nc(s)
dc(s)

,

wherenp(s), nc(s), dp(s) anddc(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

T(s) =
PC

1+PC
=

np(s)nc(s)

dp(s)dc(s)+np(s)np(s)
.

T(s) is 1 for low frequency and starts to increase at its first zero, which is the
process zero ats = 2. It increases further at the controller zero ats = 3.9 and
it does not start to decrease until the closed loop poles appear at ωc = 10 and
ωo = 20. We can thus conclude that there will be a peak in the complementary
sensitivity function. The magnitude of the peak depends on the ratio of the zeros
and the poles of the transfer function.

The peak of the complementary sensitivity function can be avoided by assign-
ing a closed loop zero close to the slow process zero. We can achieve this by
choosingωc = 10 andζc = 2.6 which gives the closed loop poles ats= −2 and
s= −50. The controller transfer function then becomes

C(s) =
3628s+40000

s2 +80.28s+156.56
= 3628

s+11.02
(s+2)(s+78.28)

The sensitivity functions are shown in dashed lines in Figure 12.13. The controller
gives the maximum sensitivitiesMs= 1.34 andMt = 1.41, which gives much better
robustness. Notice that the controller has a pole ats= −2 that cancels the slow
process zero. The design can also be done simply by canceling the slow, stable
process zero and designing the system for the simplified system. ∇

One lesson from the example is that it is necessary to choose closed loop poles
that are equal to or close to slow, stable process zeros. Another lesson is that slow,
unstable process zeros impose limitations on the achievable bandwidth, as was
already noted in Section 11.5.
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Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a PI controller for a first order system, where the process and the con-
troller have the transfer functions

P(s) =
b

s+a
C(s) = k+

ki

s
.

The loop transfer function is

L(s) =
b(ks+ki)

s(s+a)

and the closed loop characteristic polynomial is

s(s+a)+b(ks+ki) = s2 +(a+bk)s+ki .

If we let the desired closed loop characteristic polynomialbe

(s+ p1)(s+ p2),

we find that the controller parameters are given by

k =
p1 + p2−a

b
ki =

p1p2

b
.

The sensitivity functions are then

S(s) =
s(s+a)

(s+ p1)(s+ p2)
T(s) =

(p1 + p2−a)s+ p1p2

(s+ p1)(s+ p2)
.

Assume that the process polea is much larger than the closed loop polesp1 and
p2, say p1 < p2 < a. Notice that the proportional gain is negative and that the
controller has a zero in the right half plane ifa > p1 + p2, an indication that the
system has bad properties.

Next consider the sensitivity function, which is 1 for high frequencies. Mov-
ing from high to low frequencies we find that the sensitivity increases at the pro-
cess poles= a. The sensitivity does not decrease until the closed loop poles are
reached, resulting in a large sensitivity peak that is approximatelya/p2. The mag-
nitude of the sensitivity function is shown in Figure 12.14 for a= b= 1, p1 = 0.05,
p2 = 0.2. Notice the high sensitivity peak. For comparison we have also shown
the gain curve for the case when the closed loop poles are faster than the than
the process pole (p1 = 5, p2 = 20). The problem with the poor robustness can be
avoided by choosing one closed loop pole equal to the processpole, i.e. p2 = a.
The controller gains then become

k =
p1

b
ki =

ap1

l
,

which means that the fast process pole is canceled by a controller zero. The loop
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Figure 12.14: Gain curves for Bode plots of the sensitivity functionS for designs with
p1 < p2 < a (left) anda < p1 < p2 (right). The full lines are the true sensitivities and the
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transfer function and the sensitivity functions are

L(s) =
bk
s

S(s) =
s

s+bk
T(s) =

bk
s+bk

.

The maximum sensitivities are less than 1 for all frequencies. Notice that this is
possible because the process transfer function goes to zeroass−1. ∇

Design Rules for Pole-Placement

Based on the insight gained from the examples it is now possible to obtain design
rules that give designs with good robustness. Consider the expression (12.8) for
the complementary sensitivity function, repeated here:

Mt = sup
ω

|T(iω)| =
∥

∥

∥

PC
1+PC

∥

∥

∥

∞
.

Let ωgc be the desired gain crossover frequency. Assume that the process has ze-
ros that are slower thanωgc. The complementary sensitivity function is 1 for low
frequencies and it increases for frequencies close to the process zeros unless there
is a closed loop pole in the neighborhood. To avoid large values of the comple-
mentary sensitivity function we find that the closed loop system should have poles
close to or equal to the slow stable zeros. This means that slowstable zeros should
be canceled by controller poles. Since unstable zeros cannotbe canceled, the pres-
ence of slow unstable zeros means that achievable gain crossover frequency must
be smaller than the slowest unstable process zero.

Now consider process poles that are faster than the desired gain crossover fre-
quency. Consider the expression for the maximum of the sensitivity function.

Ms = sup
ω

|S(iω)| =
∥

∥

∥

1
1+PC

∥

∥

∥

∞
.

The sensitivity function is 1 for high frequencies. Moving from high to low fre-
quencies the sensitivity function increases at the fast process poles. Large peaks
can result unless there are closed loop poles close to the fast process poles. To
avoid large peaks in the sensitivity the closed loop system should have poles that
match the fast process poles. This means that the controller should cancel the fast
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process poles by controller zeros. Since unstable modes cannot be canceled, the
presence of a fast unstable pole implies that the gain crossover frequency must be
sufficiently large.

To summarize, we obtain the following simple design rule: slow stable pro-
cess zeros should be matched slow closed loop poles and fast stable process poles
should be matched by fast process poles. Slow unstable process zeros and fast
unstable process poles impose severe limitations.

Example 12.10 Nanopositioner
A simple nanopositioner was explored in Example 9.9 where it was shown that
the system could be controlled using a an integrating controller. The performance
of the closed loop was poor, because the gain crossover frequency was limited to
2ζ0ω0(1− sm). In Exercise?? it was also shown that little could be gained by
adding proportional action. To obtain improved performance we will therefore
us a PID controller. For modest increases we will use the design rule derived in
Example 12.9 that fast stable process poles should be canceled by controller zeros.
The controller transfer function should thus be chosen as

C(s) =
kds2 +kps+ki

s
=

ki

s
s2 +2ζs+a2

a2 (12.14)

which giveskp = 2ζki/a andkd = ki/a2.
Figure 12.15 shows the gain curves for the Gang of Four for a system designed

with ki = 0.5. A comparison with Figure 9.12 on page 279 shows that the band-
width is increased significantly fromωgc = 0.01 to ωgc = ki = 0.5. Since the
process pole is canceled the system will however still be very sensitive to load
disturbances with frequencies close to the resonant frequency. The gain curve of
CS(s) has a dip or a notch at the resonance frequency, which impliesthat the con-
troller gain is very low for frequencies around the resonance. The gain curve also
shows that the system is very sensitive to high frequency noise. The system will
likely be unusable because the gain goes to infinity for high frequencies.

This can easily be remedied by modifying the controller to

C(s) =
ki

s
s2 +2ζs+a2

a2(1+sTf +(sTf )2/2)
, (12.15)

which has high-frequency roll-off. Selection of the constant Tf of the filter is a
compromise between attenuation of high frequency measurement noise and ro-
bustness. A large value ofTf reduces effects of sensor noise significantly but it
also reduces the stability margin. A bit of experimentationusing the Gang of Four
givesTf = 0.75 as a good compromise and the curves shown in full lines in Fig-
ure 12.15. The curves forCS(s) shown that the effect of high-frequency roll-off
due to filtering is quite dramatic. Notice that the poor attenuation of disturbances
with frequencies close to the resonance are not visible in the sensitivity function
because of the cancellation of poles and zeros.

The designs thus far have the drawback that load disturbanceswith frequencies
close to the resonance are not attenuated. We will now consider a design that
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Figure 12.15: Nanopositioner control via cancellation of the fast process pole. Gain curves
for the Gang of Four for PID control with second order filtering (12.15) are shown in full
and the dashed lines show results for an ideal PID controller without filtering (12.14).

that actively attenuates the poorly damped modes. We will start with an ideal
PID controller where the design can be done analytically and we will add high
frequency roll-off. The loop transfer function obtained with this controller is

L(s) =
kds2 +kps+ki

s(s2 +2ζas+a2)
. (12.16)

The closed loop system is of third order and its characteristic polynomial is

s3 +(kda2 +2ζa)s2 +(kp +1)a2s+kia
2. (12.17)

A general third order polynomial can be parameterized as

(s+α0ω0)(s
2 +2ζ0ω0s+ω2

0) = s3 +(α0 +2ζ0)ω0s2 +(1+2α0ζ0)ω2
0s+α0ω3

0 .
(12.18)

Parametersα0 andζ0 give the configuration of the poles and parameterω0 their
magnitudes and therefore also the bandwidth of the system.

Identification of coefficients of equal powers ofs in equations (12.17) and (12.18)
gives the following equations for the controller parameters

kda2 +2ζa = (α0 +2ζ0)ω0

a2(kp +1) = (1+2α0ζ0)ω2
0

a2ki = α0ω3
0 .

(12.19)

To obtain a design with active damping it is necessary that the closed loop band-
width is at least as fast as the oscillatory modes. Adding high frequency roll-off
the controller becomes

C(s) =
kds2 +kps+k

s(1+sTf +(sTf )2/2)
. (12.20)

The valueTf = Td/10= kd/(10k) is a good value of the filtering time constant.
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Figure 12.16: Nanopositioner control using active damping. Gain curves for the Gangof
Four for PID control using the controller (12.16). The controller has high frequency roll-
off and has been designed to give active damping of the oscillatory mode. The different
curves correspond to different choices of magnitudes of the poles, parameterized byω0 in
equation (12.16).

In Figure 12.16 we show the gain curves of the Gang of Four for designs with
ζ = 0.707,α0 = 2 andω0 = a, 2a and 4a. The figure shows that the largest values
of the sensitivity function and the complementary sensitivity function are small.
The gain curve forPS(s) shows that load disturbances are now well attenuated
over the whole frequency range. The gain curve forCSshows that large control
signals are required to provide active damping. The high values ofCS(iω) for high
frequencies also show that low noise sensors and actuators with a wide range are
required. The largest gains forCS(s) are 60 , 262 and 1074 forω0 = a, 2a and 4a
respectively. The high frequency gain of the controller thusincreases dramatically
with the value ofω0. A comparison of Figures 12.15 and 12.16 illustrates the
trade-offs between control action and disturbance attenuation for the designs with
cancellation of the fast process pole and active damping. ∇

12.5 DESIGN FOR ROBUST PERFORMANCE
�

Control design is a rich problem where many factors have to betaken into account.
Typical requirements are that load disturbances should be attenuated, the controller
should only inject a moderate amount of measurement noise, the output should
follow variations in the command signal well and the closed loop system should be
insensitive to process variations. For the system in Figure 12.10 these requirements
can be captured by specifications on the sensitivity functions S and T and the
transfer functionsGyd, Gun, Gyr andGur. Notice that it is necessary to consider
at least six transfer functions, as discussed Section 11.1. The requirements are
mutually conflicting and it is necessary to make tradeoffs. Attenuation of load
disturbances will be improved if the bandwidth is increasedbut so will the noise
injection.
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It is highly desirable to have design methods that can guarantee robust perfor-
mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In this section we provide a brief review
of some of the techniques as a preview for those interested inmore specialized
study.

Linear Quadratic Control (LQG)

One way to make the trade-off between attenuation of load disturbances and injec-
tion of measurement noise is to design a controller that minimizes the loss function

J =
1
T

∫ T

0

(

y2(t)+ρu2(t)
)

dt,

whereρ is a weighting parameter as discussed in Section 6.3. This lossfunction
gives a compromise between load disturbance attenuation and disturbance injec-
tion because it balances control actions against deviations in the output. If all state
variables are measured, the controller is a state feedback

u = −Kx

The controller has the same form as the controller obtained byeigenvalue assign-
ment (pole placement) in Section 6.2. However, the controller gain is obtained by
solving an optimization problem. It has been shown that thiscontroller is very
robust. It has a phase margin of at least 60◦ and an infinite gain margin. The con-
troller is called alinear quadratic controlor LQ controlbecause the process model
is linear and the criterion is quadratic.

When all state variables are not measured, the state can be reconstructed using
an observer, as discussed in Section 7.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the modeland to reconstruct the
states using a Kalman filter as discussed briefly in Section 7.4. The Kalman filter
has the same structure as the observer designed by pole assignment in Section 7.3,
but the observer gainsL are now obtained by solving an optimization problem.
The control law obtained by combining linear quadratic control with a Kalman
filter is calledlinear quadratic Gaussian controlor LQG Control. The Kalman
filter is optimal when the models for load disturbances and measurement noise are
Gaussian.

It is interesting that the solution to the optimization problem leads to a con-
troller having the structure of a state feedback and an observer. The state feedback
gains depend on the parameterρ and the filter gains depend on the parameters in
the model that characterize process noise and measurement noise (see Section 7.4).
There are efficient programs to compute these feedback and observer gains.

The nice robustness properties of state feedback are unfortunately lost when the
observer is added. It is possible to choose parameters that give closed loop systems
with poor robustness, similar to Example 12.8. We can thus conclude that there
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Figure 12.17: H∞ robust control formulation. The left figure shows a general representation
of a control problem used in robust control. The inputu represents the control signal, the
input w represents the external influences on the system, the outputz is the generalized
error and the outputy is the measured signal. The right figure shows the special case of the
basic feedback loop in Figure 12.10 where the reference signal is zero. In this case we have
w = (−n,d) andz= (x,v).

is a fundamental difference between using sensors for all states and reconstructing
the states using an observer.

H∞ Control
�

Robust control design is often calledH∞ control for reasons that will be explained
shortly. The basic ideas are simple but the details are complicated and we will
therefore just give the flavor of the results. A key idea is illustrated in Figure 12.17
where the closed loop system is represented by two blocks, the processP and
the controllerC as discussed in Section 11.1. The processP has two inputs, the
control signalu which can be manipulated by the controller, and the generalized
disturbancew, which represents all external influences, for example command sig-
nals and disturbances. The process has two outputs, the generalized errorz which
is a vector of error signals representing the deviation of signals from their desired
values and the measured signaly which can be used by the controller to compute
u. For a linear system and a linear controller the closed loop system can be repre-
sented by the linear system

z= H(P(s),C(s))w (12.21)

which tells how the generalized errorw depends on the generalized disturbancesw.
The control design problem is to find a controllerC such that the gain of the transfer
function H is small even when the process has uncertainties. There are many
different ways to specify uncertainty and gain, giving riseto different designs.
The namesH2 andH∞ control correspond to the norms‖H‖2 and‖H‖∞.

To illustrate the ideas we will consider a regulation problem for a system where
the reference signal is assumed to be zero and the external signals are the load
disturbanced and the measurement noisen, as shown in Figure 12.17b. The gen-
eralized input isw= (−n,d). (The negative sign ofn is not essential, but is chosen
to get somewhat nicer equations.) The generalized error is chosen asz= (η ,ν),
whereη is the process output, andν is the part of the load disturbance that is not
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compensated by the controller. The closed loop system is thusmodeled by

z=




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

η
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, (12.22)

which is the same as equation (12.21). A straightforward calculation shows that

‖H(P,C))‖∞ = sup
ω

√

(1+ |P(iω)|2)(1+ |C(iω)|2)

|1+P(iω)C(iω)|
. (12.23)

There are efficient numerical methods to find a controller such that‖H(P,C)‖∞ <
γ, if such a controller exists. The best controller can then be found by iterating onγ.
The calculations can be made by solvingalgebraic Riccatiequations, for example
by using the commandhinfsyn in MATLAB. The controller has the same order
as the process and the same structure as the controller basedon state feedback and
an observer; see Figure 7.7 and equation (7.18) on page 214.

Notice that if we minimize‖H(P,C)‖∞ we make sure that the transfer functions
Gyd = P/(1+ PC), representing transmission of load disturbances to the output,
andGun = −C/(1+ PC), representing how measurement noise is transmitted to
the control signal, are small. Since the sensitivity and the complementary sen-
sitivity functions are also elements ofH(P,C) we have also guaranteed that the
sensitivities are also less thanγ. The design methods thus balance performance
and robustness.

There are strong robustness results associated with theH∞ controller. We can
understand this intuitively by comparing equations (12.1)and (12.23). We can
then conclude that

‖H(P,C)‖∞ =
1

dν(P,−1/C)
. (12.24)

The inverse of‖H(P,C)‖∞ is thus equal to chordal distance betweenP and 1/C. If
we find a controllerC with ‖H(P,C)‖∞ < γ this controller will then stabilize any
processP∗ such thatdν(P,P∗) < γ.

Disturbance Weighting

Minimizing the gain‖H(P,C)‖∞ means that gains of all individual signal trans-
missions from disturbances to outputs are less thatγ for all frequencies of the
input signals. The assumption that the disturbances are equally important and
that all frequencies are also equally important is not very realistic, recall that load
disturbances typically have low frequencies and measurement noise is typically
dominated by high frequencies. It is straightforward to modify the problem so that
disturbances of different frequencies are given differentemphasis, by introducing
a weighting filter on the load disturbance as shown in Figure 12.17. For example
low frequency load disturbances will be enhanced by choosing Wd as a low pass
filter because the actual load disturbance isWdd̄.
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Figure 12.18: Block diagrams of a system with disturbance weighting. The left figure pro-
vides a frequency weight on processes disturbances. Through block diagram manipulation,
this can be converted to the standard problem on the right.

By using block diagram manipulation as shown in Figure 12.18 we find that
the system with frequency weighting is equivalent to the system with no frequency
weighting in Figure 12.18 and the signals are related through

zw =


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= H(Pw,Cw)ww, (12.25)

wherePw = PWd andCw = W−1
d C. The problem of finding a controllerCw that

minimizes the gain ofH(Pw,Cw) is thus equivalent to the problem without distur-
bance weighting; having obtainedCw, the controller for the original system is then
C = WdC. Notice that if we introduce the frequency weightingWd = k/s we will
automatically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. In spite of the nice
properties of feedback, there are situations where the process variations are so
large that it is not possible to find a linear controller that gives a robust system
with good performance. It is then necessary to use other types of controllers. In
some cases it is possible to measure a variable that is well correlated with the
process variations. Controllers for different parameter values can then be designed
and the corresponding controller can be chosen based on the measured signal. This
type of control design is calledgain scheduling. The cruise controller is a typical
example where the measured signal could be gear position andvelocity. Gain
scheduling is the common solution for high performance aircraft where scheduling
is done based on Mach number and dynamic pressure. When usinggain scheduling
it is important to make sure that switches between the controllers do not create
undesirable transients (often referred to asbumpless transfer).

If it is not possible to measure variables related to the parameters, it is possi-
ble to useautomatic tuningandadaptive control. In automatic tuning the process
dynamics are measured by perturbing the system and a controller is then designed
automatically. Automatic tuning requires that parametersremain constant and it
has been widely applied for PID control. It is a reasonable guess that in the fu-
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ture many controllers will have features for automatic tuning. If parameters are
changing it is possible to use adaptive methods where where process dynamics are
measured on-line.

12.6 FURTHER READING

The topic of robust control is a large one, with many articles and textbooks devoted
to the subject. Robustness was a central issue in classical control as described in
Bode’s classical book [Bod45]. Robustness was deemphasized in the euphoria of
the development of design methods based on optimization. Thestrong robustness
of controllers based on state feedback shown by Anderson andMoore [AM90]
contributed to the optimism. The poor robustness of output feedback was pointed
out by Rosenbrock [RM71], Horowitz [Hor75] and Doyle [Doy78] and resulted
in a renewed interest in robustness. A major step forward wasthe development
of design methods where robustness was explicitly taken into account, such as the
seminal work by Zames [Zam81]. Robust control was originally developed us-
ing powerful results from the theory of complex variables, which unfortunately
gave controllers of high order. A major breakthrough was given by Doyle, Glover,
Khargonekar, and Francis [DGKF89], who showed that the solution to the prob-
lem could be obtained using Riccati equations and that a controller of low order
could be found. This paper led to an extensive treatment of theso-calledH∞ con-
trol, including books by Francis [Fra87], McFarlane and Glover [MG90], Doyle,
Francis and Tannenbaum [DFT92], Green and Limebeer [GL95], Zhou, Doyle and
Glover [ZDG96], Skogestand and Postlethwaite [SP05], and Vinnicombe [Vin01].
A major advantage of the theory is that it combines much of theintuition from ser-
vomechanism theory with sound numerical algorithms based on numerical linear
algebra and optimization. The results have been extended to nonlinear systems by
treating the design problem as a game where the disturbancesare generated by an
adversary, as described in the book by Basare and Beernhard [BB91].

EXERCISES

12.1 Consider a feedback loop with a process and a controller having transfer
functionsP andC. Assume that the maximum sensitivity isMt = 2. Show that the
phase margin is at least 30◦ and that the closed loop system will be stable if the
gain is changed by 50%.

12.2 Show that a stable additive perturbation∆Padd can create right half plane
zeros, but not right half plane poles, and that a stable feedback perturbation∆Pfbk
can create right half plane poles but not right half plane zeros. Give constructive
examples of each.
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12.3 Compute theµ-gap metric between the systems

P1(s) =
k

s+1
and P2(s) =

k
s−11

for k = 1,2 and 5.

12.4 The distance measure is closely related to closed loop systems with unit feed-
back. Show how the measure can be modified to apply to an arbitrary feedback.

12.5 Consider the transfer functions in Examples 12.2 and 12.3. Compute the dis-
tance measuredν(P1,P2) in both cases. Repeat the calculations when the controller
is C = 0.1.

12.6 Consider the Nyquist curve in Figure 12.12. Explain why part ofthe curve is
approximately a circle. Derive a formula for the center and the radius and compare
with the actual Nyquist curve.

12.7 (Ideal delay compensator) Consider a process whose dynamics are a pure
time delay with transfer functionP(s) = e−s. The ideal delay compensator is a
controller with the transfer functionC(s) = 1/(1−e−s). Show that the sensitivity
functions areT(s) = e−s andS(s) = 1−e−s and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

12.8 Let P andC be matrices whose entries are complex numbers. Show that the
singular values of the matrix

H(P,C) =


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are

σ1 = 0 σ2 = sup
ω

√

(1+ |P(iω)|2)(1+ |C(iω)|2)

|1+P(iω)C(iω)|
.

12.9 Show that

sup
w

|1+P(iω)C(iω)|
√

(1+ |P(iω)|2)(1+ |C(iω)|2)
= d(P,−1/C).

12.10 (Bode’s ideal loop transfer function) When designing electronic amplifiers
Bode proposed that the loop transfer function should have the form L(s) = ks−n

with 0 < n < 2. Show that such a loop transfer function has constant stability
marginsm = arcsinπ(1−n/2). Plot the Nyquist curve of the system and determine
phase and gain margins.

12.11 Consider the system

dx
dt

= Ax+Bu=


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(12.26)
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The system has the transfer function

GP(s) = C[sI−A]−1B =
s+a

s(s+1)
(12.27)

12.12 Rewrite the solution below as an exercise.

12.13 (Disk drive tracking) Insert from CDS 110a, using sensitivity. Noise→
sensitivity spec→ design→ robustness check.


