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Images collected by controlled camera networks can be processed to simultaneously

locate the position and track the movement of target objects.
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ABSTRACT | Animals routinely rely on their eyes to localize

fixed and moving targets. Such a localization process might

include prediction of future target location, recalling a

sequence of previously visited places or, for the motor control

circuit, actuating a successful movement. Typically, target

localization is carried out by fusing images from two eyes, in

the case of binocular vision, wherein the challenge is to have

the images calibrated before fusion. In the field of machine

vision, a typical problem of interest is to localize the position

and orientation of a network of mobile cameras (sensor

network) that are distributed in space and are simultaneously

tracking a target. Inspired by the animal visual circuit, we study

the problem of binocular image fusion for the purpose of

localizing an unknown target in space. Guided by the dynamics

of Beye rotation,[ we introduce control strategies that could be

used to build machines with multiple sensors. In particular, we

address the problem of how a group of visual sensors can be

optimally controlled in a formation. We also address how

images from multiple sensors are encoded using a set of basis

functions, choosing a Blarger than minimum[ number of basis

functions so that the resulting code that represents the image is

sparse. We address the problem of how a sparsely encoded

visual data stream is internally represented by a pattern of

neural activity. In addition to the control mechanism, the

synaptic interaction between cells is also subjected to

Badaptation[ that enables the activity waves to respond with

greater sensitivity to visual input. We study how the rat

hippocampal place cells are used to form a cognitive map of

the environment so that the animal’s location can be deter-

mined from its place cell activity. Finally, we study the problem

of Bdecoding[ location of moving targets from the neural

activity wave in the cortex.

KEYWORDS | Cortical waves; eye movement; formation sensing;

gaze control; Hebbian and anti-Hebbian adaptation; Kuramoto

model; Listing’s law; localization; neural network; oscillator

network; place cells; sensor network; sparse coding; theta

phase precession

I . INTRODUCTION

In recent years, wireless sensor networks have made

important advances in many scientific disciplines such as

manufacturing, agriculture, construction, and transporta-

tion. They include such wide applications as measuring

traffic on city roads, evaluating people’s interest in an art
gallery, monitoring the perimeter of an oil refinery, or

safeguarding the remote water reservoirs of the nation.

There are of course many technical challenges associated

with a successful deployment of such a network. The

challenges include acquisition of sensory information,

sharing of sensory data between nodes over a wireless

network, and synchronization of the data processing cycle

between a node and its neighbor, to name a few. There are
many interesting review articles in recent literature that

describe the general problems associated with sensor

networking (see [21], [22], [31], [32], [75], [97], and the

references therein).

As charge coupled devices (CCDs) and complementary

metal–oxide–semiconductor (CMOS) image/video cam-

eras become smaller, less expensive, and more power
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efficient, camera networks will become increasingly more
powerful and widespread. A critical first step in any

camera network deployment is Blocalization.[ The camera

nodes must determine their positions and orientations in

three-dimensional (3-D) space. Most sensor network

localization techniques use acoustic delays and radio-

frequency intensities to create a set of pairwise distances in

order to localize [19]. Our goal in this paper is to

emphasize visual sensing, localizing, and target tracking
problems associated with building a visual sensor network.

The greatest of the challenges associated with a network of

camera sensors is solving a Bsimultaneous localization and

tracking (SLAT)[ problem. Manually measuring the

locations and orientations of all cameras in the network

is a very tedious and time-consuming task. If a moving

object is seen in a camera’s field of view and a few

moments later, the same object is observed by another
camera, knowing the trajectory of the object, we could

infer the relative position of the two cameras. Unfortu-

nately, without an independent localization system like

GPS, the object’s trajectory remains unknown. Various

approaches to the SLAT problem have been addressed in

the literature (see [19], [35], and [48]).

The approach in this paper is derived from biology and

relies on the fact that as cameras move, their orientations
remain constrained. Their orientations are chosen to be a

function of the gaze direction, satisfying the well-known

Listing’s law [38]. In this way, camera sensors are actuated

in such a way that the orientation ambiguity is resolved.

Inspired from biology, we also study how images are to

be acquired, followed by how they are encoded and

decoded. In so doing, we introduce other networks that are

well studied in biology and in nonlinear dynamical system
science [2], [13], [30], [53]. In neuroscience, these net-

works arise as networks of neurons that are built as models

of the Bvisual cortex,[ Boptic tectum,[ and Bhippocampus,[
to name a few. In nonlinear system science, these networks

arise as networks of Bcoupled oscillators[ with a certain

guaranteed region of stability.

We introduce a sensing paradigm (see Fig. 1) derived

from animal vision with the eventual goal of constructing a
biologically inspired sensor network. Such a network

captures salient features of the target in order to make

predictions about its future location and recall event

sequences from the past. The sensors in the network are

expected to be able to attend to a specific visual target by

simultaneously coordinating their relative orientations as a

function of their respective positions and gaze directions.

The images captured from multiple sensors are fused and
encoded prior to any further computations. Multisensor

image fusion is carried out using a set of basis functions

that are specifically chosen to be Bovercomplete[ (i.e., the

number of basis functions are more than what would be

minimally required) so that the number of nonzero

coefficients obtained, in the basis function expansion, is

small (sparse codes).

In principle, the sparse codes obtained can be further
processed in a variety of ways depending upon the

objective of the sensor network. In this paper, we consider

the following two objectives inspired from biology.

• Prediction of a target location, utilizing the cortical

circuit.

• Recalling a sequence of prior places visited,

utilizing the hippocampal place cells.

Inspired by the turtle’s visual cortex, we design a neural
population network that generates waves of activity as a

result of a visual stimulus from the retina. We hypothesize

that the activity waves encode features from the visual

scene. It can be easily verified by carrying out the decoding

process using alternative algorithms discussed in [29],

[63], [64], and [95]. The activity wave sustained by the

neural population is controlled by a feedforward and a

feedback loopVsketched in Fig. 6Vand various adapta-
tion mechanisms, one of which is discussed in detail using

Hebbian and anti-Hebbian rules.

The problems we survey are pertinent in visual multi-

sensor fusion. They include geometric optimal control
problems in formation sensing [28], [47], [89], [96]; image

Fig. 1. The figure shows a triplet of visual sensors that

simultaneously capture images of a moving target. The rotational

movement of each sensor satisfies Listing’s constraint and the gaze

directions are constrained to pass through a moving point in space.

Captured images are fused and encoded using a population

of neurons that produces a traveling wave of activity.
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representation and sparse coding with over-complete basis
functions [34], [68], [69]; cortical flow based encoding with
population of neurons [63]; Hebbian and anti-Hebbian
adaptation of the neural population [24], [39], [41]; and

finally decoding and prediction from the cortical activity
waves [29], [63], [64], [95]. The decoding problem has

been addressed in the literature using three distinct

choices of algorithms. The first algorithm utilizes statistical
hypothesis testing [91] from the activity patterns in the
cortex to detect the location of the target [29], [63], [64]

(see Fig. 10). The second method utilizes linear time
invariant filters [37] to reconstruct features from the visual

scene [95]. These two methods have not been elaborated in

this paper. The third procedure, which we describe in this

paper, is how activity patterns are discriminated using a

coupled network of oscillators (see [44], [46], and [56]) with

multiple equilibria.
At the very outset, we would like to emphasize that the

problem of image acquisition is tightly connected to the

problem of Bsensor actuation.[ In the case of visual

sensing, mobility has many advantages and improves

sensing performance in the following three ways [51]: first,

a mobile sensor can cover a large volume of space. Second,

mobile network components can reposition themselves to

overcome obstacles and other anisotropies in the medium.
Finally, cameras can move in order to sample the event in

space where the highest resolution coverage is required. In

order to construct an example of a mobile visual sensor

network, Cyclops [79] can be coupled with a sensor

network node such as the Berkeley Mote [21]. The

combination would represent a wireless vision network

node. Together with a Pan/Tilt module, this provides an

actuation enabled wireless vision node that has already
been successfully applied for habitat monitoring, support-

ing diverse domains in monitoring bird nesting, reptile

populations, and plant phenology.

Specifically, we are interested in the visual systems of

animals in so far as how a moving target is Bacquired[ and

Bkept in view[ by active eye movement. Animals locate a

target through a well-developed Bovert[ attention mech-

anism which consists of a combination of eye and head
movement (in this paper we only describe the eye

movement). The sole purpose of this movement is to

keep a target in view. For a functional sensor network, it is

not enough just to be able to physically view a target.

Rather, it is important to internally represent events from

the visual scene via a process of Bcovert[ internal

representation. In the case of binocular vision, the physical

movements of the two eyes are synchronized in such a way
that corresponding retinal images are aligned. For

example, an interesting target is always imaged on the

fovea. Additionally, for a given target location, the images

have a unique orientation. Thus, assuming no head

movement, fixed objects look the same visually (i.e.,

without any orientation ambiguity) no matter when you

see them. This is achieved because eye movement is always

constrained by Listing’s law [38], which we shall discuss in
detail later.

The process of image alignment is not perfect, and it

has been noted by Anderson and Van Essen [3] that

Bmisalignments can be several minutes of arc under

optimal conditions and an order of magnitude larger under

more realistic conditions.[ In order to alleviate the

misalignment problem, shifter circuits have been proposed

[3] that would dynamically shift the relative alignments of
the input images without losing the local spatial relation-

ship. We do not explore the alignment compensation

problem any further in this paper (see [66] and [67] for

details). In the turtle’s visual circuit, images on the retina

cannot be used subsequently in visual discrimination or

control signal generation for a suitable motor action,

unless they are encoded and transmitted to the visual

cortex whose functional role is described in considerable
detail in this paper. This encoding process should require a

small amount of neural resource, should be easily

amenable to sensor fusion, and should be easily accessible

for subsequent signal processing and many other post-

sensory actions. The first part of this encoding process is

addressed by utilizing a sparse, over-complete set of basis

functions to represent natural scenes. The algorithm

(originally proposed in [34], [68], and [69]) chooses basis
functions in such a way that a set of natural images is

represented by a small number of basis functions. Images

from various sensors are fused utilizing principal compo-

nent analysis. A set of basis functions is generated that can

represent a pair of images by sparse codes Ba1,[ Ba2[ (see

Fig. 2) simultaneously with respect to a dominant set of

bases. The codes Ba1[ and Ba2[ are fused to obtain a single

vector Ba[ over a suitable window of time which is the
required output of the sensor fusion process.

We study how sparsely encoded and fused retinal

images are represented via a wave-generating pattern of

neural activity (see Figs. 1 and 2) by the visual cortex. The

cortical pattern of neural activity is in the form of a

traveling wave (see Fig. 7). Animals actively internalize

spatiotemporal cues from the visual environment and

generate patterns of activity in the brain. The activity
patterns, in turn, are used for recognition, associative

recalling, and prediction. We illustrate this process of

cortical encoding using neural circuits of turtle vision, and

show how visual images from two eyes are fused into a

pattern of activity waves. Typically these waves last longer

than the visual event itselfVfor example, a flash of light

incident on the turtle retina for 100 ms would result in a

cortical wave that would last for about 800 ms. The wave-
generating mechanism is easily amenable to sensor fusion

and can be readily used as an input to a decoder, which we

describe in detail in this paper.

A wave-generating population of neurons that is to be

attached to the output of a visual sensor must generate

waves continually. In effect, this means that waves must be

generated and killed, and then generated again in a
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repetitive fashion. This is achieved via a process of

Hebbian and anti-Hebbian adaptation [24], [39], [41],

which we now describe. Adaptation is intrinsic to any

population of interacting neurons, and it is designed to

either reinforce or weaken the strength of interaction
(synaptic strength). Hebb’s basic postulate is that when the

axon of neuron A is near enough to excite neuron B and

repeatedly takes part in firing it, some growth process or

metabolic change takes place in one or both of the neurons

such that A’s efficiency as one of the cells firing B

increases. It follows that in Hebbian adaptation, the

synaptic strength between two neurons increases in

proportion to the pre- and post-synaptic firing rates.
Likewise, in anti-Hebbian adaptation, the synaptic

strength is reduced. In this paper, we show that a suitable

combination of these two adaptation rules is precisely what

we need for repeated generation of traveling-wave activity

in the cortex model.

Wave propagation is believed to play a critical role in

biological pattern formation. In network-based computa-

tion, it has already found important application in
amorphous computing [1]. Vast numbers of unreliable

microsensors, actuators, and communication devices

interconnected in unknown ways would apply paradigm

from cellular cooperation in biological organisms. It would

be possible to assemble a system incorporating a multitude

of information processing units at virtually no cost. These

units would consist of logic circuits, microsensors,

actuators, and communication devices, all in the same

chip, producing particles that could be mixed with bulk

materials such as paints, gels, and concrete. Coating
buildings and bridges with Bsmart paint,[ it would be

possible to sense and report traffic, wind loads, or

structural integrity. A smart paint coating on a wall could

sense vibrations, monitor the premises for intruders, and

cancel noise. The particles would organize themselves by

interacting locally and would produce global behavior,

such as generation of a traveling wave. An initial anchor

particle, chosen by a cue from the environment, would
broadcast a message to all of its neighbors. These neighbors

propagate the message to their neighbors, and so on,

creating a diffusion wave that would spread throughout the

system. The amorphous computing environment could

play the role of a visual cortex and could be used to

experiment with synthetic biology.

We now comment on the hippocampal place cells and

how they are used to memorize and recall events encoded
by the cortex. Studies on rat hippocampal cells by O’Keefe

in the 1970s have shown the existence of place cells [99].

Place cells are cells that fire selectively in correlation to a

rat’s position while navigating a known environment. The

position in the environment that each place cell

Fig. 2. The figure shows that a pair of images from each of the two eyes are sparse coded, fused, and subsequently used as an input

to the visual cortex in generating waves. Activity rates of neurons in the cortex are used in target recognition. Three alternative schemes

are proposed: In the first scheme, activity rates are represented as a temporal strand using principal component analysis. Targets are

recognized by discriminating the strands statistically. In the second scheme, activity rates are used as an input to a network with

multiple equilibria, after preprocessing through a linear filter. Each target is assumed to correspond uniquely to an equilibrium.

A target is recognized by observing the equilibrium point that the network converges to. In the third scheme, the strands are

used as an input to the network with multiple equilibrium and the details are analogous to scheme two.
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corresponds to is called its place field. Together, the place

cell/place field relationship forms a cognitive map of the

environment, in that the rat’s location can be determined
from its place cell activity [17], [18]. Further studies of

monkeys by Ono and Nishijo have shown that monkey

hippocampal neurons also exhibit place cell properties that

are sensitive to spatial location within a known environ-

ment [85]. In addition to the place cells, the hippocampus

also sustains a slow oscillation in the theta (4–8 Hz)

frequency range. This has been observed in all mammals

including humans. This oscillation is often referred to as
the Btheta rhythm[ and each period is referred to as a

Btheta cycle.[ Firing of place cells and observation of the

theta rhythm has led to the proposal that information in

the hippocampus is contained in the phase of this rhythm

and not by the cell’s firing rate [57]. In this paper, we shall

elaborate how the phase coding is used in the hippocam-

pus to memorize and recall a sequence of events.

Our final interest is in the task of decoding. Typically if
we have point targets localized at different corners of

visual space, a specific sensing task should be able to

discriminate between events that are separated in space

from the associated activity waves generated by the cortical

circuit. One strategy described in this paper is to use a

synchronized set of coupled oscillators in a network. The

oscillator parameters have been adjusted to have multiple

stable equilibria. The network is initialized based on an
initial estimate of the target in visual space. Subsequently

the target is discriminated on the basis of the equilibria

where the network eventually settles down.

In summary, this paper highlights three important

areas of visual sensing (see Fig. 3). The first is Bactive

acquisition of visual images in a sensor network[ and we

describe the problem of formation sensing. The second is

the problem of Bsparse coding and data fusion[ followed by
an internal representation using a network of neurons.

Such a network can synthesize a wave generator, and we

describe in detail the cortical circuit of freshwater turtles
(see Fig. 6). The network can also synthesize a sequence of

interacting place cells mimicking the hippocampal circuit

of rats (see Fig. 12). We also show how adaptation plays an

important role in sustained generation of waves in the

cortex and binding of place cells in the hippocampus.

Third, we discuss the problem of decoding from the firing

pattern of the family of neurons in the cortex. Image

recognition using nonlinear dynamic models, especially
the BKuramoto model,[ is proposed and described in

detail.

II . EYE MOVEMENT SATISFYING
LISTING’S LAWS

In this section, we are interested in studying a group of

visual sensors that move in a formation. We shall use the
phrase Bformation-sensing[ for this purpose. Underlying

motivation to consider this problem comes from the

biomechanics of eye rotation [82], wherein the problem

is to simultaneously control the gaze directions of a pair of

eyes. Simply speaking, an animal has to move its eyes to

keep a target in view, and do so without introducing any

orientation ambiguity. When different parts of a visual

space are viewed in a sequence using a visual sensor, every
direction, in principal, can be viewed with an ambiguous

set of orientations. Physiological evidence supports the

view that orientation ambiguity is not present in human eye

movement; this is possible because eye movements obey a

law known as Listing’s law (see [38] and [90]). It states that

Beye rotation takes place such that the axes of rotation

always reside in a fixed plane called Listing’s Plane.[
If eye movement is constrained to satisfy Listing’s law,

every gaze direction corresponds to a specific orientation

of the eye. This is a desirable feature for image acquisition

using one or multiple sensors. If sensors move while

satisfying Listing’s constraint, multiple images acquired by

a given sensor, using a specific gaze direction, do not have

to be corrected for orientation ambiguity. The sensor

localization problem reduces to ascertaining only the

position, orientation being predetermined by the gaze. Of
course, the price we pay is in implementing the controller,

which would require messages to be passed between the

sensors. This leads to an extra cost of communication. In

this section and the next, we consider a formation of

mobile sensors that rotate satisfying Listing’s law. The

problems we consider are described as follows.

Problem I (Optimal Gaze Control Problem): Consider a
sensor that is allowed to rotate in 3-D following Listing’s

law. How would one steer the sensor optimally from an

initial gaze direction to the desired final direction?

Problem II (Binocular Formation Sensing): Consider a pair

of sensors allowed to rotate in 3-D, each constrained by

Listing’s law. The sensors are also allowed to translate with

Fig. 3. A schematic diagram showing the role of network. The

sensor network of cameras acquire target data from the 3-D world.

The acquired data from sensors are encoded by the neuronal

network in the form of traveling waves or spatially localized

activity. Finally the neuronal activity is decoded by an

interconnection of coupled oscillators in a network such

as the Kuramoto network.
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respect to each other. The sensors have to simultaneously
maintain a gaze direction that passes through a moving

point target. How would one steer the sensor pair optimally

from an initial position of the target to a final position?

The formation sensing problem can be posed likewise

using any number of sensors. The binocular problem is

illustrated in this paper.

A. Background of the Eye Movement Problem
Since as early as 1845, modeling the eye plant in order

to generate various eye movements has been studied

closely by Listing, Donders, and Helmholtz (see for

example [82]). The eyes rotate with three degrees of

freedom, making the problem interesting yet simple, when

compared to other somewhat more complex human

movements. The human eye is spherical in shape and

has SOð3Þ as configuration space where SOð3Þ is the space
of all 3 � 3 rotation matrices. However, from the point of

view of target tracking, only the gaze direction vector is

important. The precise orientation of the eye is not

significant as long as it remains invariant for a given fixed

gaze direction. Said differently, the orientation of an eye is

ambiguous up to a full circle of rotation matrices for a

specific gaze direction. One needs to resolve the ambiguity

while tracking the gaze prescribed by the moving target.
Listing’s law describes precisely how this rotational

ambiguity is resolved. It states that all eye rotations occur

about axes orthogonal to the primary gaze direction. If we

were to take the ðx1; x2; x3Þ axes such that the x3 axis was

aligned with the normal gaze direction, then Listing’s law

amounts to a statement that all eye rotations take place

about axes that lie in the plane given by x3 ¼ 0. What

complicates the rotational movement is that the axis of
rotation, while staying inside this plane, may change in

time. In order to solve optimal control problems, it

becomes imperative to be able to parameterize the subset

of all eye orientations that satisfy Listing’s law.

B. Understanding Rotational Motion
Through Quaternion

A quaternion is a 4-tuple of real numbers ðq0; q1; q2; q3Þ
which can be added and scalar multiplied as a vector.

Additionally, two elements in the set of quaternions can be

added and multiplied which gives quaternions. The set of

quaternions is indeed a noncommutative division ring (see

[55] for details). Writing q ¼ ðq0; q1; q2; q3Þ ¼ q0 þ q1iþ
q2jþ q3k and s ¼ ðs0; s1; s2; s3Þ ¼ s0 þ s1iþ s2jþ s3k, one

can define

q þ s ¼ ðq0 þ s0; q1 þ s1; q2 þ s2; q3 þ s3Þ

and

q:s ¼ w (1)

where w can be easily written down using the rule
i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1 as follows:

w ¼ðq0s0 � q1s1 � q2s2 � q3s3Þ
þ ðq0s1 þ q1s0 þ q2s3 � q3s2Þi
þ ðq0s2 � q1s3 þ q2s0 þ q3s1Þj
þ ðq0s3 þ q1s2 � q2s1 þ q3s0Þk:

For the purpose of this discussion, we are interested in
unit quaternions, i.e., when

P3
i¼0 q2

i ¼ 1, and denote the

space of unit quaternions by S3. Our main point is the

following: Every unit quaternion ðq0; q1; q2; q3Þ can be
viewed as an element of SOð3Þ, i.e., a rotation matrix, which
rotates a vector v 2 R3 by an angle � about axis ðq1; q2; q3Þ
where cosð�=2Þ ¼ q0.

The map between S3 and SOð3Þ is given as follows:

� : S3 ! SOð3Þ (2)

where

ðq0 q1 q2 q3ÞT 7�!
q2

0þq2
1 �q2

2�q2
3 2ðq1q2�q0q3Þ 2ðq1q3þq0q2Þ

2ðq1q2þq0q3Þ q2
0þq2

2�q2
1 �q2

3 2ðq2q3�q0q1Þ
2ðq1q3�q0q2Þ 2ðq2q3þq0q1Þ q2

0þq2
3�q2

1 �q2
2

0
B@

1
CA:

If we denote q ¼ ðq0; q1; q2; q3Þ, �v ¼ ð0; vÞ, �u ¼
ð0; RvÞ, one can show that �u ¼ q:�v:q�1, i.e., Rv is the

vector part of q:�v:q�1 obtained purely using quaternion

multiplication (1).

C. Parameterizing the Space List
Let us denote by List, the subset of SOð3Þ which

contains all the rotation matrices with axes of rotation in

the plane x3 ¼ 0. It would follow that List is parameter-

ized by all unit quaternion of the form ðq0; q1; q2; 0Þ where

q2
0 þ q2

1 þ q2
2 ¼ 1. One can pick the angles ð�; �Þ as the

coordinates for List as follows:

� : ½0; �� � ½��; ���!List

ð�; �Þ7�! cos
�

2
; cos � sin

�

2
; sin � sin

�

2
; 0

� 	
(3)

where � is the angle of rotation and ðcos �; sin �; 0Þ is the

axis of rotation in Listing’s plane x3 ¼ 0. Then we have

the following correspondence by the map (2) between S3

and SOð3Þ in the List [see equation (4) at the bottom of

the next page].

An element of List, parameterized by ð�; �Þ rotates

t h e v e c t o r ð0; 0; 1ÞT t o t h e v e c t o r ðsin � sin�;
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�cos � sin�; cos�ÞT
, which is an element on the unit

sphere S2. Thus, if v is a unit vector in R3, there exists

unique ð��; ��Þ such that

v ¼ ðsin �� sin��;�cos �� sin��; cos��ÞT:

It would follow that a unique element of List, parameter-

ized by ð��; ��Þ would rotate the vector ð0; 0; 1ÞT
to the

vector v. Hence, the orientation ambiguity is resolved.

D. Riemannian Metric on List
Assume that the eye is a perfect sphere and its moment

of inertia is equal to I3�3. The configuration space SOð3Þ is

equipped with a left invariant Riemannian metric [12]

described at the identity element of SOð3Þ as follows:

�ðeiÞ;�ðejÞ

 �

I
¼ �i;j

where

�ðekÞ ¼
0 �3;k ��2;k

��3;k 0 �1;k

�2;k ��1;k 0

0
@

1
A

and �l;m denotes the Kronecker delta function, i.e., �l;m ¼ 1

if l ¼ m and �l;m ¼ 0 if l 6¼ m, and where ei are standard

basis vectors. Via the two mappings (2), (3), the

Riemannian metric on SOð3Þ induces a Riemannian metric

on List. If we define

g11 ¼
@

@�
;
@

@�

� 

; g22 ¼ @

@�
;
@

@�

� 

; g12 ¼ @

@�
;
@

@�

� 


one can show [73] by explicit calculation that

g11 ¼ sin2 �

2
; g22 ¼ 1

4
; g12 ¼ g21 ¼ 0

and the corresponding Riemannian metric on List is

given by

g ¼ sin2 �

2
d�2 þ 1

4
d�2:

It is straightforward, but somewhat tedious to use the
Riemannian metric and compute the corresponding

geodesic equation on List given by

€�þ cot
�

2
_� _� ¼ 0;

€�� sin� _�
2 ¼ 0: (5)

E. Eye Rotation Along an Optimal Trajectory
If we consider a potential function in the form Vð�; �Þ,

we write down the Lagrangian as

Lð�; �; _�; _�Þ ¼ 1

2
ð _� _�Þ g11 g12

g21 g22

� 	
_�
_�

� 	
� Vð�; �Þ:

The Euler–Lagrangian equation [4]

d

dt

@L

@ _qi �
@L

@qi
¼ 
qi

(6)

where qi corresponds to the ith coordinate and 
qi
are

components of an external generalized force, gives rise to

the following two equations of motion:

€�þ cot
�

2
_� _�þ cosec2 �

2

@V

@�
¼ cosec2 �

2

�;

€�� sin� _�
2 þ 4

@V

@�
¼ 4
� (7)

where 
� and 
� are the generalized forces. As an il-

lustration, let us assume that Vð�; �Þ ¼ sin2ð�=2Þ and that

we wish to control the state ð�; _�; �; _�Þ from ð�0; 0; �0; 0Þ
to ð�1; 0; �1; 0Þ in T units of time while minimizing the

energy

ZT

0


2
� ðtÞ þ 
2

�ðtÞdt: (8)

Our choice of the potential function is motivated by the

fact that all axes of rotation on Listing’s plane are equally

cos
�

2
cos � sin

�

2
sin � sin

�

2
0

� 	T

7�!
cos2 �

2
þ cos 2� sin2 �

2
sin 2� sin �

2
sin � sin�

sin 2� sin �
2

cos2 �
2 � cos 2� sin2 �

2
�cos � sin�

�sin � sin� cos � sin� cos�

0
@

1
A (4)
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preferable. On the other hand, the potential is 0 for zero
angle of rotation and rises monotonically when the angle of

rotation increases in magnitude to �. The choice of a

quadratic cost function on the generalized forces is

somewhat arbitrary. A realistic cost function may be

obtained assuming that eye rotation is actuated by three

pairs of muscles. Assuming a linear model of these six

muscles using a spring and damper, one can write the

generalized forces as follows:


� ¼
X6

i¼1

½Fi þ Ci�
@li
@�

and


� ¼
X6

i¼1

½Fi þ Ci�
@li
@�

where Fi is the active force on the ith muscle (that is

neurally actuated and can therefore be controlled), li is the

instantaneous length of the ith muscle, and Ci is the passive

force on the ith muscle (that is generated by the spring and
damper and cannot be controlled). One can minimize an

alternative cost function given by

ZT

0

X6

i¼1

F2
i dt: (9)

In this paper, we do not follow this alternative route (see

[60] for a general introduction to muscle mechanics and

eye rotation problems).
If we denote z ¼ ðz1; z2; z3; z4Þ ¼ ð�; _�; �; _�Þ to be the

state vector, then the equations of motion in (7) become

d

dt

z1

z2

z3

z4

2
6664

3
7775 ¼

z2

�z2z4 cotðz3=2Þ
z4

z2
2 sinðz3Þ � 1

2
sinðz3Þ

2
6664

3
7775

þ

0

csc2ðz3=2Þ
0

0

2
6664

3
7775
� þ

0

0

0

4

2
6664
3
7775
�: (10)

The Hamiltonian for the system is

Hðz; �Þ ¼ � � _z � 1

2

2
� þ 
2

�

� �

where � ¼ ð�1; �2; �3; �4Þ is the costate vector and the
Hamilton’s equations in this case are given by

_z ¼ @H
@z

; _� ¼ � @H
@�

:

The optimal control can be found using the maximum
principle as

@H
@
�

¼ 0 ) 
� ¼
�2

sin2ðz3=2Þ
@H
@
�

¼ 0 ) 
� ¼ 4�4: (11)

A necessary condition for the optimal path in the

Listing space is given by the following system with state

variables z and costate variables �:

_z1

_z2

_z3

_z4
_�1
_�2
_�3
_�4

2
66666666664

3
77777777775
¼

z2

�z2z4 cot z3

2

� �
þ 
�� cosec2 z3

2

� �
z4

z2
2 sinðz3Þ � 1

2
sinðz3Þ þ 4
��

0
��1 þ �2z4 cot z3

2

� �
� 2�4z2 sinðz3Þ

�
�2z2 cot z3

2

� �
� �3

2
66666666664

3
77777777775

(12)

where � ¼ �ð1=2Þ�2 z2 z4cosec2ðz3=2Þ � �4z2
2 cosðz3Þþ

ð1=2Þ�4 cosðz3Þ þ �2 cotðz3=2Þ csc2ðz3=2Þ
�� . The bound-

ary conditions are given by zð0Þ ¼ ð�0; 0; �0; 0Þ and

zðTÞ ¼ ð�1; 0; �1; 0Þ. For a comparison between the optimal

path and the geodesic path, see [74].

III . SENSING WITH A TWO EYE
FORMATIONVBINOCULAR VISION

In this section, we generalize the problem of optimally

orienting a single eye to a pair of eyes analogous to what is

shown in Fig. 1. We assume that each eye satisfies Listing’s

constraint, i.e., the axis of rotation always lies in a plane.

For simplicity, let us assume that Listing’s plane for each of

the two eyes is the plane x3 ¼ 0, which is perpendicular to
the primary gaze direction. The two eyes are assumed to be

separated by a vector a ¼ ða1; a2; 0Þ. The gaze directions of

the two eyes are constrained to remain coplanar at all

times during their movement, i.e., the gaze directions pass

through a point at all times although this point may move

with the target.

If we assume that vector a lies in the ðx1; x2Þ plane,

the configuration space for the BTwo Eye Formation[ is a
subset of

List1� List2� R2 (13)
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with coordinates given by ðð�1; �1Þ; ð�2; �2Þ; ða1; a2ÞÞ. Note
that the members of List1 and List2 are unit quaternions

with elements having an axis of rotation in Listing’s plane.

The coplanarity condition on the gaze direction gives rise

to the following additional constraint on the vector

ða1; a2Þ:

a1 ¼�ðsin �2 tan�2 � sin �1 tan�1Þ
a2 ¼�ðcos �2 tan�2 � cos �1 tan�1Þ: (14)

We conclude that the required configuration space is a

five-dimensional (5-D) manifold M ¼ List1� List2� R

with coordinates ð�1; �1; �2; �2; �Þ. We have the map

� : ½0; ���½��; ���½0; ���½��; ���R�!S3 � S3 � R2

ð�1; �1; �2; �2; �ÞT 7�!
cos �1

2

cos �1 sin �1

2

sin �1 sin �1

2

0

0
BBBB@

1
CCCCA;

cos �2

2

cos �2 sin �2

2

sin �2 sin �2

2

0

0
BBBB@

1
CCCCA;

a1

a2

� 	
(15)

where a1 and a2 are given by (14).

The configuration space M parameterizes the two eye

complex that can rotate and separate such that the

rotations satisfy Listing’s constraint with respect to the

axes of rotation. The separation vector is assumed to lie in

a plane and the gaze vectors are assumed to be coplanar. In
order to compute the optimal movement of the two eye

complex, we would need to compute the Riemannian

metric. Derivation of the optimal trajectory from there

onwards is straightforward and analogous to that of (12).

Let G ¼ ðgijÞ, where gij is the ijth element of the

corresponding Riemannian metric. One can show by

explicit calculation that

g12 ¼ g21 ¼ g34 ¼ g43 ¼ 0

and a few of the other nonzero elements are given by

g11 ¼ sin2 �1

2
þ �2 tan2 �1;

g13 ¼ g31 ¼ ��2 tan�1 tan�2 cosð�1 � �2Þ;
g14 ¼ g41 ¼ �2 tan�1 sec2 �2 sinð�1 � �2Þ;
g15 ¼ g51 ¼ � tan�1 tan�2 sinð�1 � �2Þ;

g22 ¼ 1

4
þ �2 sec4 �1;

g23 ¼ g32 ¼ �2 tan�2 sec2 �1 sinð�2 � �1Þ;
etc.

The most important fact about the matrix G is that it is not
diagonal, which illustrates the complexity of the two eye

formation sensing problem. Interestingly, we note that G is

not explicitly a function of �1 and �2 but �1 � �2 instead.

This suggests different possible strategies for simplifying

the G matrix as illustrated in the next subsection.

A. Different Subcases of the Binocular
Formation Sensing

The 5-D configuration space and the associated

Riemannian metric simplifies considerably under various

different restrictive assumptions, which we shall now

discuss.

Subcase A: If we assume that the axes of rotation of the

two eyes remain parallel all the time, this is equivalent to

constraining �1 ¼ �2. The configuration submanifold M1

for this case is given by the coordinates ð�; �1; �2; �Þ and

we have a map

�1 : ½0; �� � ½��; �� � ½��; �� � R�!S3 � S3 � R2

which can be defined from (15) by restricting �1 ¼ �2.

The elements of Riemannian metric are given by

G ¼

g11 0 0 0

0 g22 g23 g24

0 g23 g33 g34

0 g24 g34 g44

0
BB@

1
CCA

where

g11 ¼ sin2 �1

2
þ sin2 �2

2
þ �2ðtan�2 � tan�1Þ2

g22 ¼ 1

4
þ �2 sec4 �1;

g33 ¼
1

4
þ �2 sec4 �2

g44 ¼ðtan�2 � tan�1Þ2;

g23 ¼ ��2 sec2 �1 sec2 �2

g24 ¼ �� sec2 �1ðtan�2 � tan�1Þ
g34 ¼� sec2 �2ðtan�2 � tan�1Þ:

Subcase B: If we assume that the axes of rotation of the

two eyes remain parallel all the time and the distance

between the center of the two eyes remains constant

ð¼ 1Þ, this is equivalent to constraining �1 ¼ �2 ¼ � and
a2

1 þ a2
2 ¼ 1. The configuration submanifold M2 for this
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case is given by the coordinates ð�; �1; �2Þ and we have
a map

�2 : ½0; �� � ½��; �� � ½��; ���!S3 � S3 � R2

which can be defined from (15) by restricting �1 ¼ �2 and

restricting � such that a2
1 þ a2

2 ¼ 1. Explicitly, the map is
given as follows:

ð�; �1; �2ÞT7�!

cos �1

2

cos � sin �1

2

sin � sin �1

2

0

0
BB@

1
CCA;

cos �2

2

cos � sin �2

2

sin � sin �2

2

0

0
BB@

1
CCA; sin �

cos �

� 	
:

The elements of Riemannian metric are given by

G ¼
g11 0 0

0 g22 0
0 0 g33

0
@

1
A

where g11 ¼ 1 þ sin2ð�1=2Þ þ sin2ð�2=2Þ and g22 ¼ g33 ¼
1=4. The Riemannian metric on M2 is given by

g ¼ 1 þ sin2 �1

2
þ sin2 �2

2

� 	
d�2 þ 1

4
d�2

1 þ d�2
2

� �

and the corresponding geodesic equations are given by

€�þ 1

2

sin�1
_�1 þ sin�2

_�2

1 þ sin2 �1

2
þ sin2 �2

2

_� ¼ 0;

€�1 ¼ sin�1
_�
2 _�1; €�2 ¼ sin�2

_�
2 _�2: (16)

If we assume a potential function given by Vð�; �1; �2Þ ¼
sin2ð�1=2Þ þ sin2ð�2=2Þ, then Euler Lagrange’s
equation (6) gives rise to the following set of

equations of motion:

_z1 ¼ z2;

_z2 ¼ � 1

2

z4 sin z3 þ z6 sin z5

1 þ sin2 z3

2
þ sin2 z5

2

z2

þ 1

1 þ sin2 z3

2
þ sin2 z5

2


�;

_z3 ¼ z4;

_z4 ¼ z2
2 sin z3 � 2 sin z3 þ 4
�1

;

_z5 ¼ z6;

_z6 ¼ z2
2 sin z5 � 2 sin z5 þ 4
�2

where ðz1; z2; z3; z4; z5; z6Þ ¼ ð�; _�; �1; _�1; �2; _�2Þ. If we
wish to control the state ð�; _�; �1; _�1; �2; _�2Þ from

ð�0; 0; �1
0; 0; �2

0; 0Þ to ð�1; 0; �1
1; 0; �2

1 ; 0Þ in T units of

time while minimizing the energy

ZT

0


2
� ðtÞ þ 
2

�1
ðtÞ þ 
2

�2
ðtÞdt (17)

we consider the Hamiltonian for the system given by

Hðz; �Þ ¼ � � _z � 1

2

2
� þ 
2

�1
þ 
2

�2

� �

where � as before is the costate vector. The optimal path

can be computed using Hamilton’s equation

_z ¼ @H
@z

; _� ¼ � @H
@�

analogous to what has been shown in Section II. The

optimal control can also be computed likewise using the

maximum principle (11).

To end this section, we would like to reiterate some of

the main points. We introduce and analyze optimal control
problems in binocular sensing, wherein we consider a pair

of visual sensors that can rotate and translate with the

constraint that the gaze directions of the cameras always

remain coplanar. The constrained space is parameterized

as a Riemannian manifold and we illustrate the compu-

tation of the optimal trajectory which minimizes a suitably

chosen cost function (17). Most importantly, when eye

rotations take place using rotation matrices that are
constrained within the associated configuration space

(13), orientation ambiguity for a given gaze direction is

resolved. These techniques can, in principle, be general-

ized to more than a pair of sensors although this fact is not

illustrated in this paper.

Remark: In closing this section, we would like to remark

that the problem of optimally orienting visual sensors to

track a moving target in space while satisfying Listing’s

constraint has been described in detail in [74]. In this

Eye rotation satisfying List’s
constraints resolves the
orientation ambiguity at
a given gaze direction.

Ghosh et al. : Bio-Inspired Networks of Visual Sensors, Neurons, and Oscillators

Vol. 95, No. 1, January 2007 | Proceedings of the IEEE 197



paper, we simplify the problem of sensor localization to
only estimating the position of visual sensors in space. The

orientation of the sensors is already constrained by

Listing’s constraint, implementation of which requires an

additional price of internode communication. Many other

sensor localization and camera calibration techniques are

quite standard in the machine vision literature and we

would like to refer to [33], [40], [58], [92], and [101]. For a

geometric introduction to the constrained optimal trajec-
tory tracking problem, see Hussein and Bloch [47].

IV. IMAGE REPRESENTATION AND
SPARSE CODING

As has been noted in the introduction, the spatiotemporal

sequence of images on the retina (or the image plane of a

camera) is not very useful for subsequent processing unless
it has been represented, perhaps with respect to a set of

basis functions. Such a representation typically reduces the

data set, highlights the more relevant parts of the visual

field, and renders the data amenable for sensor fusion. In

mammalian vision, for example, retinal images are

internally represented by the Bvisual cortex[ and in this

paper we would like to study this representation. The

problem we raise in this section is described as follows.

Problem III (Image Representation Problem): Assuming
that we have a stream of images incident on the retina,
what would constitute a good basis function representation
for subsequent encoding of this spatiotemporal stream?

For the general problem of sensor design and fusion, the

answer to Problem III will vary. We restrict our discussion

to the visual circuit of mammalian vision and restrict

further to the visual circuit in freshwater turtles. The

mammalian visual cortex has evolved over millions of years

to effectively cope with images of the natural environment.

It is reasonable to think that the cortex has discovered

efficient coding strategies for representing these images.
Our basic starting point in this section is to note the

principle of redundancy reduction proposed by Barlow

[8], [9], which states that a useful goal of sensory coding

is to transform the input in such a manner that reduces

the redundancy due to complex statistical dependencies

among elements of the input stream. A reasonable goal of

the visual system, then, is to extract the statistical depen-

dencies so that images may be explained in terms of a
collection of independent events. The hope is that such a

strategy will recover an explicit representation of the

underlying independent entities that give rise to the

image, which would be useful to the survival of the or-

ganism. This principle has been successfully applied by

Atick and colleagues, over the last decade [5]–[7],

towards understanding the response properties of retinal

ganglion cells using pairwise correlations among image
pixels. As was observed by Field [34], Olshausen and

Field [68], natural images have oriented lines and edges

that have statistical dependencies of higher order than
pairwise correlations.

In order to address the problem of reducing such

higher order forms of redundancies, Olshausen and Field

[69] have proposed to represent images described in terms

of a linear superposition of basis functions. These

functions are adopted so as to best account for the image

structure in terms of a collection of statistically indepen-

dent events. It is conjectured that the probability
distribution of these events is such that a given image is

represented by a small number (sparse) of basis functions

chosen out of a large set (over-complete). Such a strategy,

called Bsparse over-complete image coding,[ has been

detailed in [69]. In this section, we examine more closely

the consequences of utilizing such a code in which the

number of basis functions is greater than the dimension-

ality of the input. As a result, sparsification weeds out
those basis functions not needed to describe a given image

structure.

A. The Image Model and Representation With
Sparse Codes

Assume that an image patch, IðxÞ, is described as a

linear superposition of a set of basis functions, �iðxÞ, with

amplitudes ai such that

IðxÞ ¼
X

i

ai�iðxÞ þ �ðxÞ (18)

where x denotes spatial position within the patch and the

variable � represents independent and identically

distributed Gaussian noise. The basis functions are
trained on the set of images by adapting the probabilistic

model to the statistics of the images. Said differently, we

wish to match the distribution, PðIj�Þ of images arising

from the above model, to the actual distribution P�ðIÞ of

images observed in nature. In order to calculate the

probability of images arising from the model, we need to

specify the prior probability distribution of the coeffi-

cients PðaÞ as well as the probability of an image arising
from a certain state of the coefficients in the model

PðIja; �Þ. It follows that

PðIj�Þ ¼
Z

PðIja; �ÞPðaÞda:

The probability PðIja; �Þ of an image arising from a

particular choice of coefficients essentially expresses our

model of the level of noise. In view of (18), we obtain

PðIja; �Þ ¼ 1

Z
N

e
�jI�a�j2

2
2
N
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where jI � a�j2 denotes the sum

X
x

IðxÞ �
X

i

ai�iðxÞ
" #2


2
N is the variance of the noise, and Z
N

is a normalizing

constant. Since the basis set is over-complete, there will

be infinitely different choices of the coefficient vector Ba[
for any given image; our problem is to choose one which

is sparse. We achieve this by choosing a suitable prior

distribution.
Assume first of all that the different components ai of

the parameter vector a are statistically independent, so

that we have

PðaÞ ¼
Y

i

PðaiÞ:

As was noted by Olshausen and Field [69], Bthe notion of

sparseness is incorporated by shaping the probability

distribution of each ai to be unimodal and peaked at zero

with heavy tails.[ This would ensure that most coefficients

ai would be close to zero. As an example, one can choose

PðaiÞ ¼
1

Z�
e��SðaiÞ

where the function S determines the shape of the dis-

tribution, � is a parameter that controls its steepness,

and Z� is a normalizing constant. Choosing � ¼ 1 and

SðxÞ ¼ logð1 þ x2Þ corresponds to specifying a Cauchy

distribution for the prior, which has the desired sparse

shape.

In order to obtain the desired sparse code, one resorts

to minimizing the following cost function:

E ¼
X

x

IðxÞ �
X

i

ai�iðxÞ
" #2

þ �
X

i

SðaiÞ:

The cost function E has two components. The first term

computes the reconstruction error and the second term

incurs a penalty for utilizing too many basis functions.

The cost function E is minimized in two separate phases,

one nested inside the other. In the inner phase, E is

minimized with respect to the ai, for each image, holding
the �i fixed. In the outer phase (i.e., on a long timescale

and over many image presentations), E is minimized with

respect to the �i. For details on this optimization, we

once again refer to [69].

B. Image Compression With Principal Components
In our discussion so far, we have obtained Bsparse

codes[ as coefficient vectors of the form fai; i ¼ 1; 2; . . .g
that can encode an image IðxÞ with respect to a set of basis

functions �iðxÞ. Instead of obtaining sparse codes for the

entire image, we subdivide an image into blocks along the

horizontal direction and each block is further subdivided

into patches. In order to get codes of low dimension, it is

natural to encode each image patch using sparse codes and
subsequently concatenate the codes within each block for

further data compression using principal component

analysis. The details are sketched in Fig. 4. The sparse

coefficient vectors for the patches within each block of the

image are arranged into a single vector Aj, where

j ¼ 1; 2; � � � ; J and J is the number of blocks. So the image

can be sparsely represented by vectors in the form

A ¼ ½A1; A2; � � � ; AJ�:

These vectors are further compressed using principal

component analysis and the image can be encoded by a few

significant principal components. The codes obtained from

the principal components could be transmitted and
decoded over a wireless network for any of the stated

purposes discussed in the introduction. In the next two

sections, we follow the biological track and use the codes

as input to the visual cortex or to the hippocampus. By

doing so, we introduce a network of neurons or oscillators

and study how network activity is altered as a result of

changes in the observed visual scene.

Remark: We would like to remark that the general

strategy of sensor fusion using code concatenation makes

Fig. 4. The image is subdivided into blocks along the horizontal

direction and each block is further subdivided into patches.

The sparse vectors of the jth block of the image are stacked

into a single long vector and compressed using principal

components (PCA) to generate � coefficients for the

wave generator.
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sense only because the orientation ambiguity of the camera
sensors has already been resolved. The codes representing

multiple images are functions of the target pose and the

sensor location.

V. PATTERN GENERATION WITH A
POPULATION OF NEURONSVCORTICAL
COMPUTATION

Sensory information is typically encoded in animals via

synchronized activity of a population of neurons. For

example, mammals have a cerebral cortex that embodies

several topographically organized representations of visual

space. Extracellular recordings show that neurons in a

restricted region of the visual cortex are activated when a

visual stimulus is presented to a restricted region of the

visual space, the classical receptive field of the neuron
[25]. Neurons at adjacent points in the cortex are activated

by stimuli presented at adjacent regions of the visual space.

Consequently, there is a continuous but deformed map of

the coordinates of the visual space to the coordinates of the

cortex. Extracellular recordings from the visual cortex of

freshwater turtles, on the other hand, produce a different

and interesting result [86], described as follows.

BNeurons at each cortical locus are activated by visual
stimuli presented at every point in the binocular visual space,
although the latency and shape of the response waveforms vary as
the stimulus is presented at different loci in the visual space.[

This suggests that position in the visual space is

represented not by a retinotopic map, but by a wave of

neural activity. Experiments conducted by Senseman et al.
[81], [86], [87] and Prechtl et al. [76]–[78] support this

viewpoint. These experiments used voltage sensitive dyes
and multielectrode arrays to show that presenting a visual

stimulus to the retina of an in vitro preparation of the turtle

eye and brain produces a wave of depolarization that

propagates anisotropically across the cortex.

More recent studies [30] have indicated a connection

of sensory stimuli and traveling electrical waves with their

possible role in computation. Such waves have also been

described in the primary visual [23], [88] and somatosen-
sory cortices [27], [36], [72] of mammals, including

humans [98]. Kopell and coworkers [53] have studied

rhythms of the nervous system using dynamically coupled

oscillator network synchronization [2], [13], [54], [65] and

have linked these networks to important behavioral and

cognitive states including attention, working memory,

associative memory, object recognition, sensory motor

integration, and perception, among others. It has long
been known [93] that the firing of hippocampal cells

during rat movement is strongly correlated with the theta

rhythm (i.e., a field potential oscillation with a frequency

range of 4–12 Hz). More recently [70], an interesting

relationship between the theta rhythm and the firing of

place cells that selectively respond to specific portions of

the environment has been observed. Place cells have been

subsequently used by Brown and coworkers [17], [18] in a
statistical paradigm to decode position from ensemble

firing patterns of the rat hippocampus.

Our goal in this section is to explore the connection

between visual sensory inputs and associated waveform

generated using a recently introduced [63], [64] large-

scale model of the turtle visual cortex. The emphasis is

primarily on the role of cortical waves (see Fig. 7) for the

purpose of encoding and decoding.

A. A Large Scale Model of the Turtle Visual Cortex
The turtle visual cortex has three layers (an outer

layer 1, an intermediate layer 2, and an inner layer 3) and

contains at least 11 morphologically distinct types of

neurons, only some of which are well characterized. These

are the pyramidal cells, the subpial cells, the stellate cells,

and the horizontal cells. Pyramidal cells have their somata
located in intermediate layer 2 of the cortex and are

predominantly excitatory. The other three types of cells

are inhibitory; subpial cells have their somata and

dendrites situated in the outer half of layer 1, stellate

cells have their somata situated in the inner half of layer 1,

and horizontal cells have their somata situated in layer 3.

Visual input from the retina is routed through an

intermediate structure called the lateral geniculate complex
(LGN). Pyramidal cells, subpial cells, and stellate cells

receive direct [feedforward, Fig. 6(b)] projections from the

Fig. 5. Distribution of cells in each of the three layers of the turtle

cortex projected on a plane. The lateral geniculate (LGN) cells are

distributed linearly (shown at the right side of the bottom edge

of the cortex) and the solid line shows how they interact

with cells in the cortex. The distribution of subpial cells

is not shown.
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LGN. Pyramidal cells make projections to subpial, stellate,

horizontal, and other pyramidal cells. Subpial, stellate, and
horizontal cells make feedback projections to pyramidal

cells [Fig. 6(b)]. See Fig. 5 for a distribution of cells in each

of the three layers projected on a plane and Fig. 6(a) for a

schematic diagram of the interconnection between the

cells (for details, see [94]).

The large-scale model is constructed by representing

each neuron through a multicompartmental model based

on the anatomy of the neurons. Each compartment is
modeled by a standard membrane equation and imple-

mented in GENESIS [14]. The model that we have

constructed and shown in Fig. 5, consists of 200 LGN

cells, 680 pyramidal cells, 44 subpial cells, 50 stellate cells,

and 20 horizontal cells. For a detailed description of the

constructed model, see [64] and [94].

B. Simulation of Cortical Waves With
Stationary Stimuli

A stationary point target stimulus has been simulated by

presenting a 50-ms square current pulse to a set of adjacent

LGN neurons. For the purposes of our simulation, we first

considered 20 equidistant positions of stimuli across the

LGN (three of these positionsVleft, right, and centerVare

shown in Fig. 5). The simulation time was set to 800 ms.

Membrane potentials of individual pyramidal neurons
were recorded and saved in a data file and visualized as

movies as shown in Fig. 7. The cell coordinates, indicat-

ing the position of the neuron in the cortex, follow a

statistical distribution that can be estimated from
experimental data (see [64] for details). In this paper,

we assume that these distributions are known.

C. Detection From the Cortical Waves Using
Principal Component Analysis

Let Iðx; y; tÞ denote the spatiotemporal signal of

response of the model to different stationary stimuli as

detailed in the last subsection. It follows that Iðx; y; tÞ can
be viewed as a collection of movie frames (snapshots).

Given that every frame is n � m pixels and every movie has

p frames, it follows that the dimension of Iðx; y; tÞ could be

as high as n � m � p. Our main interest is to compare two

different responses (movies) in order to quantify the

differences and similarities between them. We now

describe the principal components-based technique for

such a comparison.
Principal components have been widely used in various

disciplines, including image and signal processing, data

compression, fluid dynamics, partial differential equations

[26], weather prediction, etc. [43]. In image processing,

the method is used for removing a redundancy (decorre-

lated pixels) from images [80]. The transformation itself is

linear, representing a rotation of a coordinate system so

that neighboring pixels in the new coordinate system are
less correlated. Moreover, the rotation proposed by the

method is optimal as it leads to a complete removal of the

correlation from neighboring pixels, which is equivalent to

diagonalizing the image correlation matrix. Consequently,

the image can be approximated in a low-dimensional sub-

space, using only selected basis vectors, also called prin-

cipal eigenvectors. Depending on the context, this method

goes by various names: Karhunen–Loeve (KL) decom-
position, proper orthogonal decomposition, Hotelling

Fig. 6. Cortical circuit of freshwater turtles. Interconnection

between neurons in various layers of the visual cortex is shown.

Fig. 7. A traveling wave of cortical activity from the model cortex.
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decomposition, and singular value decomposition. We
shall refer to it as KL decomposition.

In the KL decomposition, an n � p pixel frame is

written as a vector of size n � p. Therefore, the kth

spatiotemporal signal Ik can be viewed as a collection of

m frames

Ik ¼ uk
1; uk

2; . . . ; uk
m

� �

where each vector uk
j is an element of Rnp. The qth order

successive reconstruction of the spatiotemporal signal

Ikðx; y; tÞ is given by

Î kðx; y; tÞ ¼
Xq

i¼1

�k
i ðtÞMiðx; yÞ (19)

where Miðx; yÞ 2 Rnp are the principal modes.

The analysis presented in [63] observed that the first
few principal components capture most of the energy

content of a movie. In particular, a third-order approxi-

mation utilizing three principal modes M1ðx; yÞ, M2ðx; yÞ,
M3ðx; yÞ, carries over 99% of the energy content. These

three modes have been sketched in the left-hand column of

Fig. 8. The kth movie is closely represented by the vector

time trajectory

Ak ¼ �k
1ðtÞ; �k

2ðtÞ; �k
3ðtÞ; t ¼ 1; 2; . . . ;m

� �T

in R3m, where t varies between each of the m time frames.

In the right-hand column of Fig. 8, the time coefficients

�k
1ðtÞ, �k

2ðtÞ, �k
3ðtÞ have been sketched.

Because the positions of neurons in the model cortex

are randomized with each new simulation, the vector
function Ak can be viewed as a random process. Statistical

analysis of this process can be facilitated if the process is

further parameterized using a second KL decomposition.

The rth order successive approximation of the kth random

vector Ak is given by

�k
1ðtÞ

�k
2ðtÞ
�k

3ðtÞ

2
4

3
5 ¼

Xr

j¼1

�k
j FjðtÞ:

It follows that the two KL decompositions lead to a

convenient representation of the kth movie Ikðx; y; tÞ by a

vector in Rr given by

Bk ¼ �k
1 ; �

k
2; . . . ; �

k
r

� �T
:

In our analysis, we use a third-order approximation

ðr ¼ 3Þ and each data set is represented by a point in

R3, conveniently called the � space.

Because of the randomness of the model, presentation

of the same stimulus does not produce the same response

in general. Correspondingly, these responses do not pro-

duce the same point in the � space, but appear clustered.
These clusters move in the � space as the position of the

stimulus changes. This is illustrated in Fig. 9 wherein only

the second and the third coordinates of the cluster have

been shown and 20 different positions of the stimulus

have been chosen uniformly from left to right along the

LGN array.

The cluster of points in the � space can be used to

compute the conditional density functions, and these func-
tions can subsequently be used in statistical detection of

stimulus location using hypothesis testing algorithms [91]

(see Fig. 10 for the associated decision space with three

stimulus points located at the left, center, and right posi-

tions of the LGN array. The decision spaces are sketched for

three different time windows from top to bottom. The

overlapping clusters in the bottom-most picture show that

stimulus location is not detected accurately.).

D. Hebbian and Anti-Hebbian Control of Patterns
We have already seen in this section that a group of

neurons in the turtle visual cortex has the ability to

sustain a traveling wave. Typically this wave results as an

interaction between a feedforward and a feedback circuit

Fig. 8. The left-hand column shows the three principal spatial modes.

The right-hand column shows the corresponding time coefficients.
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(see Fig. 6), the details of which have been explained in

[94]. Roughly speaking, the feedforward circuit controls

the origination and propagating speed of the traveling

wave and the feedback circuit controls the propagation

duration. Waves are typically generated in the pyramidal

cells as a result of an external input current that results in
an increase in membrane potential. Pyramidal cells locally

excite each other, resulting in a region of neural activity

which tends to propagate in all directions. Left unabated,

these pyramidal cells would excite the entire cortex.

Fortunately, the feedforward circuit incorporates inhibi-

tory actions from the stellate and subpial cells. Although

the precise roles of the two inhibitory cells are different

and somewhat unclear, they control the timing of wave
generation. There are inhibitory actions that inhibit the

wave using a feedback circuit due to three different cells:

subpial, stellate, and horizontal. The feedback inhibition

reduces and eventually kills the neuronal activity at the

spot where the activity is greatest. The combined effect of

the two circuits gives the appearance of a traveling wave.

Eventually these waves are killed by a strong gaba (a type

of synaptic input) initiated inhibition that originates after
a long delay.

Using the large-scale model of the visual cortex that

consists of excitatory and inhibitory cells described above,

we observed that the neuron population remained hyper-

polarized (i.e., maintained a very low membrane potential)

long after the initial wave had been killed. The cortex

remained unresponsive to future visual inputs, an unde-

sirable property. One way to remedy this problem is to
detect this period of hyperpolarization and increase the

synaptic interaction between the excitatory pyramidal

cells. This would amplify the tiny input into the pyramidal

cells, forcing these cell populations to get out of hyperpo-

larization. This was achieved successfully, using Hebbian
and anti-Hebbian adaptation.

In Hebbian adaptation, the synaptic strength between

two cells increases in proportion to the product of the pre-

and post-synaptic activities. Likewise, in anti-Hebbian
adaptation, the synaptic strength between two cells

decreases in proportion to the product of the pre- and

post-synaptic activities. In our model, the excitatory

interconnection between pyramidal cells is chosen to be
anti-Hebbian. This produces increasingly larger synaptic

weights between pyramidal cells once the wave has died
out. The inhibitory interactions between the stellate/

subpial/horizontal and the pyramidal cells are chosen to be

Hebbian. These produce increasingly stronger inhibition

to active pyramidal cells. In Fig. 11, we show anti-Hebbian

Fig. 9. Cluster of points in � space corresponding to different

stationary stimuli. Each cluster contains 50 points as a result of

simulating the cortex model 50 times with each of 20 stimuli.

Two-dimensional versions of the plots are shown for clarity

using the second and third components of the � vector.

Fig. 10. Decision space for three hypothesis detection.

The coordinates are log likelihood ratios computed for three

different time windows.
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action on the pyramidal cells. Rows 1a and 2a show wave

activity as a function of time. After about 700 ms, the first
round of waves has been inhibited and the pyramidal cells

are hyperpolarized. The weights between the cells are very

large, as indicated by the red lines in rows 1b and 2b of

Fig. 11. A subsequent input causes a second round of waves

(not shown in the figure).

VI. MEMORY AND RECALL OF EVENT
SEQUENCE WITH A NETWORK OF
HIPPOCAMPAL CELLS

In this section, we show the cortex in relation to other

functional units of the animal’s brain viz. the hippocam-

pus, as shown in Fig. 12. A salient stimulus from the cortex

captures the animal’s attention and drives the hippocam-

pus to a theta state [57]. In this state, the hippocampus

produces a 4–8 Hz wave in the local field potential (LFP).
Note that LFP is the integration of extracellular field

potential over a large population of cells. It is an electrical

potential of up to several millivolts produced by a cell

population. In the theta state, the LFP of the hippocampus

shows a rhythm that is called the theta rhythm. In this

state, the hippocampus is believed to be actively engaged
in memory formation [20].

In addition to the theta rhythms, the hippocampus also

has a family of place cells [85], [99], which fire selectively

in correlation with the rat’s position while navigating a

known environment. As the rat passes through a place

field, over a matter of seconds, many successive theta

Fig. 11. Pyramidal to pyramidal anti-Hebbian synaptic response to changes in the pyramidal activity. (1a): Frames of pyramidal cell activity

due to pulse input to the LGN at 0 ms lasting for 150 ms. (1b): Frames of weight responses corresponding to the activities in 1a.

(2a): Frames of pyramidal cell activity due to pulse input to the LGN at 400 ms following the first pulse lasting for 150 ms.

(2b): Frames of synaptic weight responses corresponding to activities in 2a.

Fig. 12. Sequence memory in the hippocampus. The associations

from A to B to C are stored in the hippocampal synaptic connections

which leads to the recall of the A,B,C sequence in one theta cycle

when the place cells for A are activated by the cortex.
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cycles pass. It has been observed that the phase of the

theta cycle at which the place cells fire progresses grad-

ually, a phenomenon called the Btheta phase precession[
[84] (see Fig. 13).

It has been proposed [57] that information in the

hippocampus is carried by the phase at which the place cell

fires with respect to the theta rhythm, and not just by its

firing rate. The phase timing of the place cells encoding

the place field location information helps us to solve a

well-known problem of sequence encoding. A sequence of

locations visited by the animal, is encoded by the firing of
place cells separated by phase over a single cycle of the

theta rhythm. It is shown in Fig. 13 that the events A, B,

and C may have taken place in intervals of 1 s to 1 min. The

associated place cells fire with a difference of up to about

100 ms, shown in Fig. 13 at the third cycle.

Synaptic plasticity was first observed in the brain by

Bliss and Lomo [11] in the rabbit hippocampus, which led

to the view of the hippocampus as a key center for learning
in the brain. It was later established by Bi and Poo [10] that

the form of learning in the hippocampus, in particular

learning a sequence of events, is the spike time dependent

synaptic plasticity (STDP). STDP states that for two events

whose associated place cell spiking activity falls within the

range of about 40 ms, the synaptic association between the

corresponding place cells is strengthened. In Fig. 13, we

show the synaptic association between events A, B, and C.
When only event A occurs, the synaptic strength between

place cells that represent A is strengthened. When event B
follows event A, cells associated with events A and B both

fire (A slightly leading B in phase) within one cycle of the

theta rhythm. This strengthens the synaptic association

from B to A. The situation is similar when all three events

A, B, and C occur in succession.

As a result of the association between place cells
corresponding to the three locations, these locations are

memorized in the order they were visited. At the time of

recall, the current sensory input could provide a recall cue.

For example, starting from position A, the animal could

recall that it had previously visited positions B and C after

A, and the recall takes place within one cycle of the theta

rhythm.

VII. DETECTION OF PATTERNS
USING KURAMOTO TYPE
OSCILLATOR NETWORKS

The purpose of this section is to introduce yet another

computing paradigm, emerging from a network of

oscillators, for the purpose of decoding from cortical

waves. Elements of the oscillator network interact with
each other via phases rather than amplitudes; memorized

patterns correspond to synchronized states. Each unit of

the oscillator network oscillates with the same frequency

and a prescribed phase relationship. For pattern recogni-

tion with a network of oscillators, phase differences,

instead of phases, play a crucial role. The mechanism of

recognition is related to phase locking. To illustrate the

main idea, we would like to review a model proposed by
Kuramoto [56].

A. Phase Locking With a Network of
Kuramoto Models

Consider a dynamical system of the form

_�i ¼ !þ
XN

j¼1

sij sinð�j � �i þ  ijÞ (20)

where �i, i ¼ 1; � � � ;N (assume N ¼ 2 for illustration),

are phase variables taking values in the interval ½��; �Þ.
The parameters sij and  ij are assumed to satisfy sij ¼ sji,

 ij ¼ � ji. The index i refers to the ith unit and these

units are coupled. In order to understand the dynamics

of (20), we define a new variable � ¼ �1 � �2 and

rewrite (20) as follows:

_� ¼ �2s12 sinð��  12Þ: (21)

Fig. 13. Formation of the A to B to C asymmetric synaptic sequence associations by slowly progressing cortex stimulation and theta

phase precession.
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The stationary points of (21) are given by ��  12 ¼ k�,
out of which the stable points are given precisely by

��  12 ¼ 2k�; k ¼ 0;�1;�2; � � � : (22)

For �1, �2 in the interval ½��; �Þ, � ¼  12 and

� ¼  12 þ 2� are the two stable points if  12 G 0, and
� ¼  12 and � ¼  12 � 2� are the two stable points if

 12 9 0. Up to mod 2�, the two stable points of � are

actually the same indicating that (21) converges globally to

an unique equilibrium point.

B. Memory With Two Elements
Let us discuss the problem of detecting n patterns with

a Kuramoto model using two units (i.e., N ¼ 2). In order
to use (21) for the purpose of memorizing n patterns, we

would require that it have (at least) n equilibria. This can

be achieved by rescaling the phase variables as

��1 ¼
1

n
�1; ��2 ¼ 1

n
�2:

Rewriting (20) with respect to the new variables, we

obtain

_��1 ¼
1

n
!þ 1

n
s12 sinðn ��2 � n ��1 þ  12Þ

_��2 ¼ 1

n
!þ 1

n
s21 sinðn ��1 � n ��2 þ  21Þ:

By defining �� ¼ ��1 � ��2, we obtain analogously the

following equation:

_�� ¼ � 2

n
s12 sinðn ���  12Þ: (23)

Up to mod 2�, the n stable stationary points of (23) are

given by ��e
k ¼ ð 12=nÞ þ ð2ðk � 1Þ�=nÞ if  12 G 0. Addi-

tionally, it can be verified that if

��e
k �

�

n
G ��ð0Þ G ��e

k þ
�

n
(24)

then ��ðtÞ converges to the kth stable stationary point ��e
k.

The phase difference variable ��ðtÞ can be plotted as a unit

complex number ei ��ðtÞ. In Fig. 14, such a plot is shown

when the rescaling parameter is 3. This gives rise to three

stable stationary points at ��e
k ¼ ð 12=3Þ þ ð2ðk � 1Þ�=3Þ,

k ¼ 1; 2; and 3.

The main idea is to utilize the convergence properties

of (23) to distinguish among n complex patterns. Let us

define the following n vectors in C2 as

p1 ¼
�1

�2

� 	
and pk ¼

eþi
ðk�1Þ�

n �1

e�i
ðk�1Þ�

n �2

 !
(25)

for k ¼ 2; 3; � � � ; n, where �1 and �2 are any two complex

numbers such that

j�1j ¼ j�2j ¼ 1

and

argð�1��2Þ ¼
 12

n
:

The complex vectors pk, k ¼ 1; 2; . . . ; n, are n memorized

complex patterns associated with n stable equilibria ��e
k,

k ¼ 1; 2; . . . ; n. Let us define a mapping

� : C2�!R (26)

as follows:

w1

w2

� 	
7�!argðw1�w2Þ:

I t would fol low that � ð pk Þ ¼ �� e
k ¼ ð 12 = n Þþ

ð2ðk � 1Þ�=nÞ. Thus the n patterns pk, k ¼ 1; 2; � � � ; n,

are mapped to the n stable equilibria of (23) under the map
�. Patterns which are close to any pk would be attracted

towards the corresponding kth equilibrium. This principle

can therefore be used as memory.

However, we are not interested in a set of complex

patterns. Rather, we would like to memorize patterns of

real vectors. Assume that we have n vectors vk, k ¼ 1;
2; � � � ; n, in RQ which we would like to memorize. We

consider a map

T : RQ�!C2 (27)

such that

vk 7�!pk; k ¼ 1; 2; � � � ; n

where pk-s are defined as above. So the memorized

patterns are associated with phase difference equilibria

via the map �T, where

�TðvkÞ ¼ ��e
k:

Ghosh et al. : Bio-Inspired Networks of Visual Sensors, Neurons, and Oscillators

206 Proceedings of the IEEE | Vol. 95, No. 1, January 2007



Thus, the dynamics of (23) can be used to memorize the n
patterns. To recognize (recall) a pattern v in RQ, the

phase variables �i-s of the two oscillatory units can be

initialized with TðvÞ and ��ðtÞ converges to one of the

equilibria.

C. Memorizing Patterns With Higher
Order Dynamics

As discussed in the previous subsection, n patterns can

be memorized with nonlinear dynamics of a second-order

Kuramoto model using a phase difference that is rescaled

by n. In general, the nonlinear dynamics of a higher order

Kuramoto model can be used to memorize more patterns

using the same rescaling, or the same number of patterns
using lower rescaling, since more equilibria can be

achieved in higher order Kuramoto models. We now

consider a locally connected Kuramoto model with N units

described as follows:

_�1 ¼!þ s12 sinð�2 � �1 þ  12Þ
þ s1N sinð�N � �1 þ  1NÞ

_�i ¼!þ siði�1Þ sin �ði�1Þ � �i þ  iði�1Þ
� �

þ siðiþ1Þ sin �ðiþ1Þ � �i þ  iðiþ1Þ
� �

for i ¼ 2; � � � ; ðN � 1Þ
_�N ¼!þ sNðN�1Þ sin �ðN�1Þ � �N þ  NðN�1Þ

� �
þ sN1 sinð�1 � �N þ  N1Þ (28)

where sij ¼ sji,  ij ¼  ji, and �i, i ¼ 1; � � � ;N are phase

variables taking values in the interval ½��; �Þ. The index i
refers to the ith unit and these units are coupled. Among

the phase difference variables between oscillatory units

�ij ¼ �i � �j, i; j ¼ 1; 2; � � � ;N, there are only N � 1

independent variables and they are denoted by 
d ¼
½�12 �23 � � ��ðN�1ÞN�T . Stability analysis would give us

that, up to mod 2�, the unique stable equilibrium is given

by ½ 12  23 � � � ðN�1ÞN�T . Analogously, if the phase

variables are rescaled by M with ��i ¼ �i=M, i ¼ 1;
2; � � � ;N, then the new phase difference vector �
d ¼

d=M. It would follow that there are MðN�1Þ equilibria up

to mod 2� for the new phase difference variables in the

following form:

 12

M þ 2ðk1�1Þ�
M

 23

M þ 2ðk2�1Þ�
M

..

.

 ðN�1ÞN

M þ 2 kðN�1Þ�1ð Þ�
M

0
BBBB@

1
CCCCA

where ki 2 f0; 1; 2; � � � ;M � 1g with i ¼ 1; 2; � � � ;N � 1.

So, to memorize n patterns, we may choose a Kuramoto

model described by (28) with the least number of
oscillatory units for a given rescaling, or choose the lowest

rescaling to phase variables for a given Kuramoto model

only if MðN�1Þ � n.

Fig. 14. Phase variable ��ðtÞ is plotted as a unit complex number ei ��ðtÞ with the rescaling parameter 3, showing three stable equilibria which

result in three regions of convergence for the dynamical system (23) under initial conditions constrained by (24).
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To illustrate the pattern recognition mechanism, we
use the third-order Kuramoto model with rescaling pa-

rameter 2 such that up to four patterns can be memorized

or recognized. We define the phase difference variables

as follows:

�ij ¼ �i � �j

and we have

_�12
_�23
_�31

2
4

3
5 ¼

�2s12 s23 s31

s12 �2s23 s31

s12 s23 �2s31

2
4

3
5 sinð�12 �  12Þ

sinð�23 �  23Þ
sinð�31 �  31Þ

2
4

3
5:

Up to mod 2�, the above equation has a unique stable

stationary point at  12,  23,  31. Scaling the phase

variables as

��1 ¼
1

2
�1; ��2 ¼ 1

2
�2; ��3 ¼

1

2
�3

we can write down the dynamics of ��12, ��23, ��31, where
��ij ¼ ��i � ��j.

Note that all the three-phase difference variables are

not independent. So we may only consider ��12 and ��23

without loss of generality. The four stable stationary points

are given by

 12

2
 23

2

 !
;

 12

2
þ �
 23

2

 !
;

 12

2
 23

2
þ �

 !
;

 12

2
þ �

 23

2
þ �

 !
: (29)

Four patterns of vectors in C3 are defined as follows:

P1 ¼
�1

�2

�3

0
B@

1
CA; P2 ¼

e
i�
2�1

e
�i�

2 �2

e
�i�

2 �3

0
B@

1
CA

P3 ¼
e

i�
2�1

e
i�
2�2

e
�i�

2 �3

0
B@

1
CA; P4 ¼

e
i�
2�1

e
�i�

2 �2

e
i�
2�3

0
B@

1
CA

where we assume that

 12 ¼ 2ðarg�1��2Þ;  23 ¼ 2ðarg�2��3Þ:

Analogously, the four complex patterns are associated to

the four stable stationary equilibria. From here onwards, it

is easy to define a transformation that would map patterns
of real vectors in RQ to complex patterns in C3.

VIII . AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate through an example many of

the important encoding and decoding techniques pre-

sented earlier in this paper. We use a binocular system to

show how a visual scene can be projected onto the retinal
planes of two visual sensors (which are cameras), how the

projected images can be fused using sparse representation

and principal components to generate cortical signals

(used as an input to the model cortex), and how the

cortical activities can be used to decode the depths of

objects in the visual scene using Kuramoto models. This

section does not illustrate memory and recalling using

place cells in the hippocampus.
We consider a specific visual scene that the cameras

detect with a fish as the target (shown in Fig. 15). The fish

is kept at various depths in the visual field and is observed

by a pair of cameras. Our eventual goal is to be able to

detect the depth of the fish in the visual scene.

The first step is the problem of image acquisition by the

two cameras. We achieve this by projecting the scene

perspectively onto the retinal planes of the cameras.
Knowing the positions of the two cameras ri, i ¼ 1; 2, the

coordinates of the target with respect to the individual

cameras, ½x0i; y0i; z0i�
T , can be computed via a translation and

a rotation operator as follows:

x0i
y0i
z0i

2
4

3
5 ¼ RT

i

x
y
z

2
4
3
5� ri

0
@

1
A

where ½x; y; z�T are the coordinates of the target with

respect to a world coordinate frame. The images captured

by the cameras can be computed utilizing the following

projection rule:

x0i
y0i
z0i

2
4

3
57�! �x0i

f
z0i

�y0i
f
z0i

" #

where f is the focal length, assumed to be 1 for simplicity.

Note that the rotation matrix RT
i has to satisfy Listing’s

constraint and can be easily calculated from the map

defined in (4) between S3 and SOð3Þ.
In this example, we consider the simple case in which

two cameras are located on the X-axis symmetrically and

the target is located on the Z-axis at three different

nominal depths d with variation �. Three nominal depths
are chosen at 50f , 75f , and 100f . Fig. 16 shows the

projections of the third image frame through the two
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cameras from the depth at d ¼ 50f , 75f , and 100f ,

respectively.

As discussed in the introduction and Section IV, the

spatiotemporal sequences of images on the image planes

of the two cameras need to be fused and encoded. To do

so, the images are sparsely represented with a set of over-

complete basis functions and the sparse codes from the

two channels are fused and compressed using principal
components, as already described in Section IV. The

fusion process, illustrated in Fig. 17, is now described.

The sparse codes from each of the horizontal blocks in the

images are stacked together as follows:

A1ðtÞ; � � � AJðtÞ
! "

where

AjðtÞ ¼
A

j
1ðtÞ

A
j
2ðtÞ

 !

where the superscript j indicates the blocks along the

horizontal direction. The vectors AjðtÞ, obtained by the

process of fusion, are represented using principal compo-

nents and the associated �-coefficients are the codes that

represent the left and right camera views of the image.

These codes are used as an input to the model cortex for

wave generation.

Using the visual cortex model with an embedded

noise, 50 cortical responses are simulated for each depth

d together with five different variations, for a total of
150 cortical waves generated.

We hypothesize that the depth information is encoded

in the responses of the model cortex. Our next problem is

to decode the depth parameter using the nonlinear

dynamics of the Kuramoto models. The cortical responses

Fig. 16. Projections of the third image frame in the scene (Fig. 15)

on the retinal planes through the two cameras in the binocular

visual system from different depths at d ¼ 50f, 75f, and

100f, respectively.

Fig. 17. Each image is divided into several blocks and each block into

several patches. The sparse codes of the corresponding blocks from

the two images (one from the left camera and the other from

the right) are stacked and compressed using principal

components (PCA) to generate the � coefficients.

Fig. 15. A sequence of four images over time in this illustration. Image 1 and 2 are on the top from left to right. Image 3 and 4 are on the

bottom from left to right.
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are first smoothed with a low-pass filter and represented by

points in �-space using a double KL-decomposition within

the time window described in Section V. The points are

used to initialize a Kuramoto model of two units using the

map (27) to detect the depth of the target. The map T
optimally transforms the points on �-space to the complex
vectors pk, k ¼ 1; 2; and 3 defined in (25).

It is evident from Fig. 18 that the rescaled phase dif-

ference �� ¼ �=3 converges to one of the three equilibria

associated with the three depths. Plots of phase difference

variable ��ðtÞ are sketched in terms of sin and cos functions

over time. It can be seen that most of the detection results

are correct.

IX. DISCUSSION

Pattern generating and oscillatory circuits are a source of

considerable research interest (see [45] and [83]) in

engineering and biology and we would like to make certain

connections between these lines of research and the main

content of this paper. In biology, central pattern gen-

erators provide the source of timing with respect to which
an animal is able to perform various physiological tasks

such as locomotion. The basic idea is that patterns can

generate actuating control signals (see Brockett [15], [16])

and that control signals can be switched by suitably

switching from one pattern to another (see Dayawansa

[59], [71]). It is therefore of interest in engineering to

study pattern generating circuits (see Krishnaprasad [50])

and control these circuits to match a prescribed spatio-
temporal pattern (see Dayawansa’s [59] work on solitons).

The pattern generating circuits may be constructed using

an array of microelectromechanical (MEMS) devices.

Pattern generation is also of independent interest in
biomathematics, particularly for the purpose of modeling

dynamical systems that would produce a suitable pattern in

the steady state. There are many excellent reviews on this

subject (see [62]). Such circuits are now being imple-

mented using optically interconnected parallel computing

systems [49], [61].

In this paper, our interest in patterns is motivated from

a need to encode visual spatiotemporal signals (see Knight
[52] for a review article on this topic). We have discussed

in sufficient detail the role of the visual cortex in fresh-

water turtles as an example of a pattern generating circuit

capable of generating traveling waves. Of course the visual

cortex is not the only place where patterns are generated.

Another good example is the hippocampus (see [42], [85],

and [100]) where the spatial location of an animal is

believed to be encoded as localized activity in place cells.
The precise benefit of encoding via traveling wave (as

opposed to localized activity such as in the hippocampus)

is perhaps less clear. Performing a careful analysis of the

cortical traveling wave, we have observed [29] that a

typical wave lasts for about 800 ms, out of which during

the first 200 ms the visual images on the retina are being

actively encoded. For the next 400 ms the encoded images

are retained as is evidenced by our ability to decode target
locations in these images. Finally, during the last 200 ms

the traveling wave does not carry any information. In

summary, we can say the following:

The cortical wave samples the visual field over time,
encodes events over a short time window, and retains it for a
longer time. This process is serially repeated over and over.

No systematic study has ever been conducted to explain

the precise reason for the cortical sampling described
above. We speculate that during the active propagation of

the wave, lasting for the first 600 ms, the traveling waves

are used to predict future positions of a moving target. This

prediction occurs in an open loop based on encoding prior

information during the first 200 ms of the wave

generation. Of course, such a prediction is prone to error

and requires correction in real-time. In the turtle visual

circuit, this prediction step is believed to be carried out in
the optic tectum which receives inputs from the cortex.

There is also a direct input from the retina to the tectum,

which is believed to provide the correction based on more

recent data. The detail mechanism behind how the target

locations are predicted and corrected is currently un-

known and is under investigation.

In order to classify patterns using dynamic models, in

this paper we have introduced a class of models called the
Kuramoto model. We have also argued that these models

are particularly interesting because one can show asymp-

totic convergence of the phase difference variables to

multiple points of equilibria. An important question that

one might ask is how these models can be implemented.

We would like to remark that Kuramoto type oscillators

can be implemented using a network of coupled laser

Fig. 18. Depth detection of objects using a second-order Kuramoto

model upon the points on �-space. Blue curves correspond to

depths around 50f, red curves correspond to depths around 75f,

and green curves correspond to depths around 100f. There are

50 curves for each color.
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oscillators (see [46] for details). For the purpose of this
discussion, we note that such a system of coupled oscilla-

tors provides a platform for optically interconnected paral-

lel computing (see Ishikawa [49] for details). A major

advantage in the optical domain is that the driving power is

independent of interconnection distance with practically

no attenuation losses.

The network of coupled lasers (see [46] for details) can

be written with the dimensionless rate equations as
follows:

_Ei ¼ð1 þ i�ÞNiEi þ i!Ei þ
Xn

j¼1

cijEj (30)

_Ni ¼� P � Ni � ð1 þ 2NiÞjEij2
! "

(31)

where Ei and Ni are the complex electric field and the

excess carrier number of the ith laser. The derivatives are

with respect to s, where s ¼ t
�1
p is the time measured in

units of the photon lifetime 
p, � ¼ 
p=
s is the ratio of
photon to carrier time scales, and where 
s is the carrier

lifetime. Other notations are defined as follows: P is the

pumping above threshold, � is the linewidth enhancement

factor, ! is normalized optical frequency, and cij are

complex connection coefficients.

It is convenient to use polar coordinates Ei ¼ rie
i�i

and cij ¼ sije
i ij to rewrite the model (30) and (31) in the

form

_�i ¼�Ni þ !þ
Xn

j¼1

sij

rj

ri
sinð�j þ  ij � �iÞ (32)

_ri ¼Niri þ
Xn

j¼1

sijrj cosð�j þ  ij � �iÞ (33)

_Ni ¼� P � Ni � ð1 þ 2NiÞjrij2
! "

: (34)

In the case of weak connection, the dynamical analysis

of the model (32), (33), and (34) shows that

riðtÞ; NiðtÞð Þ�!ð
ffiffiffi
P

p
; 0Þ

and the phase �iðtÞ ! !t þ �0
i , where �0

i is determined
by the initial conditions.

If all riðtÞ ! r0, then the phase model (32) for � ¼ 0

has the form that satisfies the model proposed by

Kuramoto [56] and can therefore be used to memorize a

pattern. It would be of interest to implement the laser

network, both in simulation and experimentally, to

ascertain the extent to which these networks can indeed

be used in pattern recognition. This is also a subject of
future research.

X. CONCLUSION

The main features of this paper are described as follows.

First, we consider a set of visual sensors and describe the

process of Bformation sensing[ wherein a group of sensors

visually attend to a moving target in a formation. We study
the problem of how the sensor group can optimally orient

in order to acquire a visual target. The second problem we

study is the problem of sparse coding and sensor fusion.

The main idea is to choose an over-complete set of basis

functions for sparse coding. Sparse codes from individual

sensors are fused using a minimal set of bases from

principal components. In the third part, we consider the

problem of activity wave generation. Activated by a visual
point target or a sequence of natural scenes on the retina,

an activity pattern is produced on the visual cortex. We

study detailed micro circuits of this pattern formation

process. We consider the problem of recognition using a

family of synchronized coupled oscillators and discuss

their implementation using a network of coupled lasers.

Finally, we also consider the role of hippocampal place

cells in the problem of recalling a sequence of places
previously visited by the animal. h
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