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Simultaneous Stabilization and Simultaneous 
Pole-Placement by Nonswitching Dynamic 

Compensation 
BIJOY K. GHOSH AND CHRISTOPHER I. BYRNES, MEMBER, IEEE 

Ahsrruct-In this paper, motivated by questions in fault tolerance, we 
investigate the existence of a compensator which simultaneously renders a 
given r-tuple of plants internally stable. Sufficient conditions are derived 
for simultaneous pole-assignability of the generic r-tuple by dynamic 
output feedback, which are also shown to be necessary (and equivalent to 
generic stabilizability) in the case where the number of either input or 
output channels is one. We also derive an upper bound on the order of a 
simultaneous pole-assigning compensator. If r = I, this reduces to the 
condition derived by Brasch and Pearson, while if r = 2, this contains the 
recent theorem by Vidyasagar and Viswanadham. The cases r > 3 are new. 

I. INTRODUCTION AND STATEMENT OF THE MAIN 
RESULTS 

T HE “simultaneous stabilization problem”-in either 
discrete or continuous time-consists in answering the 

following question: 

Given an r-tuple G,(s); . ., G,(S) of p X m proper trans- 
fer functions, does there exist a compensator K(s) such 
that the closed-loop systems G,(s)(Z + K(s)G,(s))-‘; . a, 
G,.(s)(Z+ K(s)G,.(s))-’ are (internally) stable? 
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As pointed out in [15], this question arises in reliability 
theory, where G,(S), . . 1, G,(s) represent a plant G,(s) 
operating in various modes of failure, and K(s) is a 
nonswitching stabilizing compensator. Of course, for the 
same reason, it is important in the stability analysis and 
design of a plant which can be switched into various 
operating modes. The simultaneous stabilization problem 
can also apply to the stabilization of a nonlinear system 
which has been linearized at several equilibria. Finally, it 
has been shown [ 141, [20] that to solve the case r = 2 is to 
solve the well-known problem considered by Youla el al. in 
[21]: When can a single plant be stabilized by a stable 
compensator? This correspondence also serves to give some 
measure of the relative depth of this problem. 

In order to describe the results obtained via this corre- 
spondence, we need some notation. First, set n; = McMillan 
degree of G,(s). In the scalar input-output setting (m = p 
= l), we regard each G,(s) as a point in Iw 2n1i’, viz. if 

G,(s)=~;(s)/qi(s) 
where 

and 

p;(s) = uoi + . . . + a, ,S”’ 

q,(s) = b,, + . . . + b,,,s”- ’ + ~“1 
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then G;(s) corresponds to the vector (~2,~; .‘.,a,,,;, b,,; . -, [4]). Perhaps not surprisingly then, Theorem 1.1 follows in 
b,, ,) E Rzn,+‘. the strictly proper case from 

‘Moreover, since pi and q, are relatively prime, this vector 
lies in the open dense set Rat(n,) c lR2*t+’ (see [3] for the 
strictly proper case). In [14] Saeks and Murray used the 
techniques of fractional representations [8] and the corre- 
spondence mentioned above to give explicit inequalities 
defining the open set 

U c Rat(n,)XRat(n,) 

of pairs (G,(s), G,(s)) which are simultaneously stabiliz- 
able. In [20] Vidyasagar and Viswanadham showed, using 
similar techniques, that, provided max( m, p) >  1, the open 
set U of pairs (G,(s), G,(s)), which can be stabilized, is in 
fact dense. 

This can be made precise by topologizing a point G,(s) 
in the set 

“2,p = {p X m Gi(s); degree G,(s) = n,} 

. as a vector in lR(2nd+ IXn’~) via its Hankel, parameters: If 

Theorem 1.2. A sufficient condition for generic simulta- 
neous pole assignability of an r-tuple of strictly proper 
plants is (1. l), where the compensator K(s) can be taken to 
be of degree q  satisfying (1.2). 

Here, simultaneous pole assignability means the assign- 
ability of r sets of.self-conjugate sets of numbers (sii; . ., 
s ,I,+y, ;} c C. In fact, sharper bounds on q  can be obtained 
(see [ 181, [ 111). Our proof relies on the recent pole-place- 
ment techniques derived for r = 1 by Stevens in his thesis 
[ 181, which contains an improvement on existing results in 
the literature (see also [9], [17]). We  have stated Theorem 
1.2 only in the strictly proper case; the proper case involves 
more technical arguments from algebraic geometry which 
can be found in [ 111. Indeed there we show that a sufficient 
condition for generic simultaneous pole assignability is 
(1 .l), where the compensator K(s) is taken to be of degree 
q  satisfying 

q[max(m,p)+l-r]+max(m,p)-r> in,. 
i=l 

cc 
Gi(s) =  c HjjsPJ 

j=O 

then G,(s) corresponds to the n + 1 p  X m block matrices 
(H,,,. . ., H,,2n,} which determines G,(s). It is known that 
x p , is an (n(m+p)+mp)-manifold (see [7], [12], [5]), 
although this is not important here. What is important is 
that Xz,,, is a topological space. 

One of our main results concerns the generic stabilizabil- 
ity problem, that is: 

Question 1.1. Fix m, p, r, and n,. Is the set U of r-tuples 
G,(s),. . -,G,(s), which can be simultaneously stabilized, 
open and dense in E2,p X ’ . . X xz,p? 

It is also important to ask, for reasons of global robust- 
ness of algorithms finding such a compensator, for com- 
pensators with a fixed degree of complexity. 

Question 1.2. Fix m, p, r, and n,. What is the minimal 
value of q  (if one exists) for which the set W 4  of r-tuples, 
which can be simultaneously stabilized by a compensator 
of degree < q, is open and dense in Zz;%, X . . . X Xi;,,? 

It should be noted that, in the case r = 1, Question 1.2 is 
an outstanding, unsolved, classical problem. In this paper, 
we prove: 

Theorem 1.1. In either discrete or continuous time, a 
sufficient condition for generic simultaneous stabilizability 
is 

max(m,p)>r. (1.1) 

Indeed,. if (1.1) holds, then the generic r-tuple can be 
stabilized by a compensator of degree less than or equal to 
q, where q  satisfies 

q[max(m,p)+l-r]> C ni-max(m,p). (1.2) 
1=l 

In the case r = 1, it is unknown whether generic stabiliz- 
ability implies generic pole assignability; that is, whether or 
not these nronerties of m. n, and D are really different (see 
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Furthermore, if the closed-loop poles are topologized by 
the coefficients of the r closed-loop characteristic poly- 
nomials of degree (ni + q) i = 1,2,. . . , r, a sufficient condi- 
tion for generic simultaneous pole assignability of all but 
possibly a proper algebraic subset of poles is (1.1) where q  
satisfies (1.2). We  shall, however, give an independent 
proof of Theorem 1.1 in the nonstrictly proper case, based 
on the equivalence of generic stabilizability and existence 
of a solution to a generic “deadbeat control” problem, 
which we can solve if (1.1) is satisfied. This argument 
extends the argument given in [4] for the case r = 1 and 
q  = 0. 

Note that if r = 1, then (1.1) is always satisfied, in which . 
case (1.2) implies: 

Corollary 1.3. (Brasch-Pearson [2]). The generic p  X m 
plant G(s) of degree n  can be stabilized by a compensator 
of order q, where q  satisfies 

(4 + l)max(m, p) a n. (1.3) 

If r = 2 and max( m, p) > 1, then (1.1) is again satisfied, 
so we obtain rather easily: 

Corollary 1.4. (Vidyasagar-Viswanadham [20]). If r =  2  
and max(m, p) > 1, then the generic pair (G,(s), G2(s)) is 
simultaneously stabilizable. 

Moreover, in this case, we know an upper bound on the 
order of the required compensator. For example, if m = p  
= 2, r = 2, then q  can be taken to satisfy 

q>n,+n,-2. 

On the other hand, in [20] the explicit conditions defining 
the closed set 

“2,p x zz p - u, 

of pairs not simultaneously stabilizable were derived. Such 
conditions can be derived from our proof, but instead we 
refer to [lo], where Theorem 1.1 (excepting (1.2)) is nroved 



424 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-30, NO. 6, JUNE 1983 

by interpolation methods also yielding a set of explicit 
conditions in the range r d max( m, p). 

Finally, we prove that the condition (1.1) is sharp in the 
following sense: 

Theorem 1.5. If min(m, p) = 1, then for fixed m, p, r, 
and n, the following statements are equivalent for proper 
plants. 

(i) q E f+J satisfies q(max(m, p)+ 1 - r)+max(m, p) 2 
X:=,n;. 

(ii) The generic r-tuple G,(s), . . . , G,(s) is simulta- 
neously stabilizable in discrete or continuous time by a 
compensator of degree 6 q. 

(iii) The generic r-tuple G,(s); . ., G,(s) is simulta- 
neously stabilizable in discrete or continuous time. 

In the strictly proper case, it follows that (i)-(iii) is also 
equivalent to generic simultaneous pole assignability. This 
holds in the proper case as well, in case we ask for generic 
simultaneous pole assignability of all but a proper alge- 
braic subset of poles, but requires a separate argument [ 111. 

Corollary 1.6. If min(m, p) = 1 and r < max(m, p), then 
the generic r-tuple is simultaneously stabilizable by a com- 
pensator of order precisely given by the least integer q 
satisfying (1.2). 

As a further corollary, we obtain one of the results 
obtained by Saeks and Murray in [ 141 (see also [ 151): 

Corollary I. 7. (Saeks-Murray [ 141). Suppose m = p = 1 
and r = 2. Simultaneous stabilizability is not a generic 
property. 

We remark that these results hold also over the field @ 
of complex numbers-in particular, the complex analogue 
of Corollary 1.7 dispels a folklore conjecture concerning 
simultaneous stabilization using compensators with com- 
plex coefficients. 

Finally, over any field, the method of proof of Theorem 
1.2 gives linear equations for a compensator simulta- 
neously placing Cni + rq poles when the generic hypothesis 
is satisfied. 

represented as 

W) 

for i=1,2;.. ,r. A l-input-m-output compensator of 
Mcmillan degree 6 q is represented as 

with the restrictionp,!,,+p n,, am+p 4 f 0 Vi = 1,2;. *,r. 
Note that in (2.1) and (2.2) the coefficients pij Vi and 

akJ has been defined up to a nonzero scale factor. More- 
over, for a strictly proper plant or compensator, p;,, = 0, 
u,,=0Vk=1;~~,m+p-1; i=l;..,r. 

The associated return difference equation, det [I + 
K(s)G,(s)] = 0, is given by 

l&(s)= c 5 pi 
,JjcO kJj[ .$Qj] 

n, + 4 
A j;o,,i Vi=1,2;..,r. (2.3) 

A generic r-tuple of plants defines a mapping x, via 
(2.3) between the compensator parameters and the coeffi- 
cient of the return difference polynomials given by 

x: R (q+ I)(m+ 1) + ~i%+r(q+ 1) (2.4) 
where 

x(&-Jm+J= (4,-,A,+J~ 
= (C,O,...,C,n,+q,...,C,O,...,C,,~;+q) 

(2.5) 

where 

S=col(Q,,-,Q,+,) 

~k=(pk,>pk2~-~pkr) (2.6) 

Plo p;, . . . . . . p;,, 0 
- I 

‘kr = q+l 

0 Pko Pi, 
I 

Pkn, _ I 

(2.7) 

n+q+l 

(2.8) 

II. POLEPLACEMENTANDTHEGENERALIZED 
SYLVESTORMATRIX: A PROOFOF 

The matrix s in (2.5) is of order (q + l)(m + p) by Cn; + 
r(q + 1). By row and column transposition, % can be 
reduced to the form 

THEOREM 1.2 

In this section we proceed to prove Theorem 1.2. Note 
that Theorem 1.1 and Corollaries 1.3 and 1.4 follow im- 
mediately in the strictly proper case from this theorem. 
Without any loss of generality we can assume that m > p, 

9s 

for if K(s) stabilizes G:(s), then K’(s) stabilizes Gi(s). 
Suppose, first of all, that p = 1, so that we are given a set 

of r, m input 1 output plants of Mcmillan degree < n, 

(n + 4 + 1) 

Pd *.. -.. ... pi 0 

0 p; . . . . . . . .: p, 

I (4+1) 
I 

(2.9) 



GHOSH AND BYRNE% NONSWITCHING DYNAMIC COMPENSATION 425 

where n = max n  ;. and P,‘, j =  0, 1, . ... , n  have been ap- 
propriately defined. ,?’ is classically known as the gener- 
alized Sylvestor matrix. For ni = n  b’i and m + p  > r, its 
rank, as computed by Bitmead et al. [l], is given by 

(q+l)(m+p)- C (4+l-vi) (2.10) 
i:v,<q+l 

where vi is the observability index of the (m + p  - r)~ r 
transfer function H = DC-’ and where 

where 

D = 2 @H-i c= i jyy-i (2.11) 
i=o i=o 

P,‘=col(c,&) and i=O,l;..,n 

We  now state the following: 
Lemma 2.1. The generalized Sylvestor matrix is of full 

rank for a generic r-tuple of proper m-input-l-output 
plants. 

Note: For simplicity, we prove this lemma for the re- 
stricted case n, = n Vi. The proof of the more general case 
has been sketched in [ 111 wherein we have explicitly con-\ 
strutted a principal minor of g, the generalized Sylvestor 
matrix which has nonzero determinant for a generic r-tuple 
of plants. 

Proof: Assume n, = n  Ifi. W ithout any loss of general- 
ity let m + p  2 r for otherwise the rows of 9 are clearly 
independent. Notice that (2.11) defines a bijection between 
an r-tuple of plants and a (m + p - r)~ r transfer function 
H of Mcmillan degree rn. Thus a generic r-tuple of plants 
correspond to an H with observability indices given by v. 
or v0 + 1 where v. is the largest integer less than or equal to 
rn /( m + p  - r). Thus noting that 

m+ppr 
C vi =  rn 

i=l 

the rank of the generalized Sylvestor matrix is given by 
(2.10) as 

min[(q+l)(m+p),r(n+q+l)]. Q.E.D 

Lemma 2.2. Assume min(m, p) = 1. A sufficient condi- 
tion for generic pole assignment, for an r-tuple of strictly 
proper plants by a proper compensator is given by 

(q+l)(m+p-r)> C n,-r+l. (2.12) 
r=l 

Proof: Assume u,,,+~, q = 1 and pk+ p.n, = ‘3 c,,,,(+q = 1 
Vi = 1,2; f ., r. Since the last column of Pki Vi = 1,2,. . . , r 
is identically equal to [O,O; . . , llT a sufficient condition for 

where 

A’,+p = (am+p~,...,am+p.q-,) 

and g, is obtained from s of (2.6) by deleting the last 
column of Pkr Vi = 1; . .,r and the last row of Qm+p. It is 
easy to see that when (2.12) is satisfied, the generic rank of 
~?is unaltered by deleting its last row. By applying Lemma 
2.1 and specializing pi,, =  0  Vi, k g, may be shown to be a 
full rank matrix of order [(q +  l)(m + p)- 11X r(n +  q). 
Therefore, a sufficient condition for generic pole placement 
is given by (2.8). Q.E.D. 

The proof of Theorem 1.2 now proceeds by a reduction 
to the case min( m, p) = 1, which has been treated in 
Lemmas 2.1-2.2. This procedure, which is called “ vector- 
ing down”, is adopted from the case r = 1, studied in 
Stevens’ thesis [ 181, and from Brasch-Pearson [2]. 

Lemma 2.3. Given an r-tuple of p  x m plants G,(s) of 
degrees ni, each with n, simple poles, there is an open 
dense set of 1  X p  vectors u E (w P such. that “G,(s) has 
degree n,, for all i. 

Proof: If r = 1, then we may expand G(s) 
n ,. - R: 

G(s)= L  L  
;=, s-x, 

in a partial fraction expansion, where Xi E C and each Ri 
has rank 1. Now, the set U, of real vectors v such that 
vR, * 0 is clearly open and dense in [w P. Defining U,, . . . , U, 
similarly, set 

v= ;; q. 
r=l 

Thus V is an open-dense set of vectors with the required 
property. 

If r > 1, one obtains, as above, sets V,, . . . , V, in [WP 
having an open dense intersection f’ ;= ,y. Q.E.D. 

Lemma 2.4. Given an r-tuple of p  X m plants G,(s), 
there exists a constant gain output feedback K such that 
the closed-loop systems G, (s)( Z  + KG,(s))- ’ have distin.ct 
simple poles. 

Proof: For r = 1, the set W, of K such that the closed- 
loop system has simple poles is the complement in R”P.of 
an ,algebraic set. It is well known. [2] that this set is 
nonempty; therefore, W, is open and dense. Taking any K 
in the open dense set n := ,y gives the desired conclusion. 

Q.E.D. 
Thus choosing any (v, K) E [w P x R”P we have a map- 

ping from an open dense set 

generic pole assignment is that x’ is onto. Here the map- 
ping 

which is rational in the Hankel parameters (Hi,) of (G,). 
Applying Lemmas 2.1-2.2 to the case min(m, p) =  1, i.e., 

x’: R (q+ I)(m+p)- 1 + [Wxn,+rq (2.13) 

is given by gives-via composition with @-an open dense set of 

x’(A~;~~,A~+~-,,A~+~)= (A~,...,Arn+~--l,A’,,+~)s, 2;; p  x . . . x 22 p 

(2.14) which can be simultaneously pole assigned. Q.E.D. 
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III. GENERIC STABILIZABILITY CONDITION OF AN Lemma 3.3. For a generic r-tuple (r G m + p) of 
FTUPLE OF PROPER PLANTS min( m, p) = 1 plants 

In this section we proceed to prove Theorem 1 .l inde- 
pendent of Theorem 1.2. We first show that the following 
three statements are equivalent. 

III~(q+l)(m+p)> e n;+rq+l. 
i=l 

I) A generic r-tuple of proper plants is stabilizable with 
respect to the open left-half plane by a proper compensator 
of degree < q. 

Proof: We want to obtain a necessary and sufficient 
condition that there exists (A,;. .,Am+p) E lR(4f’)(m+f’) 
such that 

II) A generic r-tuple of proper plants is stabilizable with 
respect to the interior of the unit disc, by a proper com- 
pensator of degree < q. 

III) A generic r-tuple of proper plants is pole assignable 
at the origin by a proper compensator of degree < q. 

Lemma 3.1. I = II. 

a m+fU*O (3.2) 

(4,-?L+p s 

=(O, )- . . ..O.f,I o,**-,fz I;.-,1 o,--,.f”) 
tn,+q+l+ +n,+q+l- +n,+q+l+ 

(3.3) 

Proof: Consider the conformal transformation 

(P(s) = (J + MS - 1) (3.1) 
which maps the r-tuple of proper plants g,, g,, . . . ,g, onto 
the r-tuple of proper plants g;; . .,g: whereg,!(s) = g,(@(s)) 
except for the algebraic set of plants satisfying -“g;(s) has 
a pole at s = 1 for some i = 1,. e .,r”. The proof now 
follows from the two facts. 

for somef. f 0, i = 1,2;. .,r. 
Equation (3.3) may be written as 

(4,-,A,+& = (0,~4 
+rq+xn,- 

(3.4) 

1) ~(3) maps the open left-half plane onto the interior 
of the unit disc. 

2) The mapping 

‘(4r,~m+p)S*= (f,~~Q-) (3.5) 

where S,, S, may be appropriately defined with S, of order 
(4 + l)(m + P) by Znj + q. 

(Necessity): If (q + l)( m + p) < Cn, + rq, the unique 
solution of (3.3) is given by 

(sl?- 4,) - (g;c. 24 

and its inverse, map the generic r-tuple of proper plants to 
the generic r-tuple of proper plants. Q.E.D. 

Lemma 3.2. II e III. 
Proof: Sufficiency is clear and follows by an analo- 

(&-YL+p)=O (3.6) 

gous argument of Lemma 3.1 with +(s) = s + a, a > 0, 
aER. 

To prove necessity, we have the following: For each 
r=1,2;.. ,(shown easily by assuming statement II and 
considering $(s) = as, a > 0, a E R). 3 an open dense set of 
U, of r-tuple of plants for which there exist a compensator 
of degree 6 q which places the poles in the interior of the 
disc D, of radius l/r centered at the origin. Consider the 
set 

since, for a generic r-tuple of plants, S, is of full rank. This 
can be easily seen by our arguments in Lemma 2.2. Finally, 
note that (3.6) does not satisfy (3.2), (3.3). 

(Sufficiency): Under the condition (q + l)( m + p) > Cn, 
+ rq + 1, there exists a vector (A,;. .,Am+p) satisfying 
(3.4) and (3.2). This again follows from the fact that 
generically S, is of full rank and its rank is unaltered by 
deleting its last row. Finally, to see that (,4,, . . . ,Am+p) can 
also satisfy (3.5) let bi, i = 1,2; . .,r, be the columns of S,. 
Then the proof follows by noting that generically 

dimKerS, >dimKer[S,]b,], j=l;e-,r. 

Q.E.D. 
. * 

u= ; u,. 
i-=1 

Theorem 1 .l then follows from Lemma 3.1, 3.2, 3.3, and 
the vectoring down technique used in the proof of Theorem 
1.2 in Section II. 

Clearly, U is a dense set by the Baire Category Theorem 
[13]. Since the mapping x given by (2.4) is linear, it has a 
closed image. Moreover, every r-tuple of plants in U admits 
a sequence of compensators which places the poles arbi- 
trary close to the origin. Thus for generic r-tuples, U is 
contained in the set V of all r-tuple of plants for which 
there exists a compensator which places the poles at the 
origin. By the Tarski [ 19]-Seidenberg [ 161 theory of 
elimination over R, T/ is indeed defined by union and/or 
intersection of sets given by polynomial equations or in- 
equations f, > 0, f@ = 0. Finally, since U is dense in V, 
/‘p(U) = 0 3 j,j,j = 0 so that V is defined by strict poly- 
nomial inequalities. Hence V is open. Moreover, since U is 
dense, V is also dense. Q.E.D. 

IV. PROOF OF THEOREM 1.5 

To say there exists q E N satisfying (1.2) is to max( m, p) 
> r. Thus (ii) follows from (i) by Theorem 1.1. 

(ii) * (iii) since (iii) is weaker than (ii). 

By Lemma 3.1, in order to prove (iii) * (i), it suffices to 
assume that G,(s); . a, G,(s) are simultaneously stabiliz- 
able in continuous time. 

Proposition 4.1. The generic (m + l)-tuple of 1 x m 
proper continuous-time plants of degree n is not simulta- 
neously stabilizable by a proper compensator of finite (but 
not a priori bounded) degree. 

Proof: Consider the domain of (simultaneous) stabil- 
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ity 

i 

n,+9 
?iJ = ( cij) : c cijsj has all roots in the open 

J=o 

. left-half complex plane, i = 1,2,. . . , r 
1  

and its convex hull &?($i)) c IW”l+9 x . . . x[w"r+q. Clearly, 
a  necessary condition for generic simultaneous stabiliz- 
ability is 

image (X,)nG?(q) *0 

for an open dense set of 7. Since 

n(9) c {Ccij)' ‘,J ’ O> 

it will suffice to prove: 
Lemma 4.2. If r = m + p, then there exists an open set 

of r-tuples TJ such that image (X,), as defined in (2.5), 
contains no vector with only positive entries. 

We  fix the value of q  and construct the associated 
Sylvestor matrix 9 as given by (2.9). We  claim that the 
open set E of plants defined by 

E g {(Pd, Pi,.. .,P,‘)IP,--‘” has all the entries negative, 

where 9 is a nonzero column of P,‘, j =  1,2,. . . ,q} 

or in other words 3crlai > 0 Vi = 1,2;. .,Cn, +  r(q +  1) 

aF=a 

has a solution. Writing s’ as 
FL [S’ ,“I 

where 

1 P; P; ... P’ 
9 

S’ = I 0  Pi ... Pi’-, 
. . . . . . . . . . . . . . . . 
0  0  Pd 

and Pj’= 0 for all j > n. 
Equation (4.1) can be written as 

a’[llS’-‘S”] = a 

where S’- ’ is given as follows 

(4.1) 

(4.2) 

(4.3) 

s’-I = ,x0 ... x4-, 
I 

. . . . . . . . . . . . . . . . x0 
where X0 = Pi-’ 

xr 
X 

- Pi-‘(p;, P;,yP;+,) . 
r-l 

=x,+1 

jo _  

Vr=O;..,q-1. 

The identity matrix of order (q +  l)(m + p) in (4.3) forces 
a’ to have all the entries positive. Moreover, since 17 E 
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E, S’- ‘S” has all its entries negative so that a.‘( S’- IS”) has 
all the entries negative which is a contradiction since (Y is a 
positive vector. 

Finally it is shown that E is not an empty set. For a 
fixed Pd = PO* choose the vector 6 to be so that P,*-‘6  has 
all its entries negative. ,Define-the-nonzero columns of P,’ to 
be6 forj=l;.., n  and call it PI* so that 

(P;, PF;..,P;)E E. Q.E.D. 

Remark: If image (X,) is affine hyperplane, then the 
necessary condition 

image (X,)nS2(9) *0 

of course is sufficient, i.e., implies 

image(X,)nq*0. 

This fact was used by Chen, together with 
Lemma 4.3. (Chen [6/). If r =  1, O(q)= ((c,;. .,cn): 

c, ’ o> 
to give precise conditions for stabilizability in the case 
r = 1, q  = 0, min(m, p) = 1, and max(m, p) =  n  - 1. Chen’s 
technique can be adapted in the cases r > 1 to give explicit 
conditions-in certain cases-defining the open set of 
simultaneously stabilizable plants when r > max(m, p) (see 
[ill>. 

Note that Corollary 1.6 now follows from our previous 
results on the generic rank of the generalized Sylvestor 
matrix, while Corollary 1.7 follows either from Theorem 
1.5 or Proposition 4.1. 
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