Homework Nine

1. Let

$$T: \mathbb{R}^3 \to \mathbb{R}^4$$

be a linear transformation defined as follows

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longmapsto \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_3 - x_1 \\ 2x_1 + x_2 - x_3 \end{pmatrix}$$

- (a) Write down the range and null space of T as span of a set of linear independent vectors.
- (b) Obtain the cartesian equation of the range and null space.
- (c) Choose a point $p = (3 \ 5 \ 2 \ 1)^T$ in the range of T. Describe the pre image of T, i.e. find

$$S = \{x \in \mathbb{R}^3 : T(x) = p\}.$$

- (d) Is the space S (in part (c)) a vector space? If not, what is it?
- (e) Let P be a plane in \mathbb{R}^3 described by the equation

$$x_1 - x_3 = 0.$$

- i. Calculate the image of P under the transformation T, call it T(P).
- ii. Is T(P) a vector space, justify with a reason. If not, what is it?

2. Let

$$A = \left(\begin{array}{ccc} 2 & 5 & 9 \\ 3 & 2 & 6 \\ 1 & -3 & 8 \end{array}\right),$$

and let b be a 3×1 vector with the property that b, Ab, A^2b are linearly independent, so that

$$B = \{b, Ab, A^2b\}$$

form a basis of IR3. Define a linear transformation

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

where

$$A^{n-1}b \longmapsto A^n b, n = 1, 2, 3, 4, \dots$$

(a) If a vector v has coordinates (1, 2, 5) with respect to basis B, i.e.

$$v = b + 2Ab + 5A^2b$$

find coordinates of T(v) with respect to the same basis B.

(b) If a vector v has coordinates (α, β, γ) with respect to basis B, i.e.

$$v = \alpha b + \beta A b + \gamma A^2 b$$

find coordinates of T(v) with respect to the same basis B.

3. Let $P_3(t)$ be the set of all polynomials in t of degree ≤ 3 . Define a linear transformation

$$T: P_3(t) \rightarrow P_3(t)$$

where

$$p(t) \longmapsto \frac{d}{dt}p(t).$$

- (a) Calculate the range and null space of T.
- (b) Let

$$B = \{1, 1+t, t-t^2, t^3\}$$

be a basis of $P_3(t)$. If a polynomial p(t) has coordinates $(\alpha_1, \beta_1, \gamma_1, \delta_1)$ with respect to the basis B. Calculate the coordinates $(\alpha_2, \beta_2, \gamma_2, \delta_2)$ of T(p(t)) with respect to B.

(c) Write down a matrix M such that

$$M\begin{pmatrix} \alpha_1\\ \beta_1\\ \gamma_1\\ \delta_1 \end{pmatrix} = \begin{pmatrix} \alpha_2\\ \beta_2\\ \gamma_2\\ \delta_2 \end{pmatrix}$$

for all possible choices of coordinates α_1 , β_1 , γ_1 and δ_1 .

4. Let $P_3(t)$ be the set of all polynomials in t of degree ≤ 3 and let $P_2(t)$ be the set of all polynomials in t of degree ≤ 2 . Define a linear transformation

$$T: P_2(t) \to P_3(t)$$

where

$$p(t) \longmapsto \int p(t) dt.$$

- (a) Calculate the range and null space of T.
- (b) Let

$$B_1 = \{1, 1+t, t-t^2, t^3\}$$

be a basis of $P_3(t)$ and let

$$B_2 = \{1, 1+t, t-t^2\}$$

be a basis of $P_2(t)$. If a polynomial p(t) has coordinates $(\alpha_1, \beta_1, \gamma_1)$ with respect to the basis B_2 . Calculate the coordinates $(\alpha_2, \beta_2, \gamma_2, \delta_2)$ of T(p(t)) with respect to B_1 .

(c) Write down a matrix M such that

$$M\begin{pmatrix} \alpha_1\\ \beta_1\\ \gamma_1 \end{pmatrix} = \begin{pmatrix} \alpha_2\\ \beta_2\\ \gamma_2\\ \delta_2 \end{pmatrix}$$

for all possible choices of coordinates α_1 , β_1 and γ_1 .

5. Consider the ordinary differential equation

$$\dot{x} = Ax + bu, \ y = c^T x$$

where x(0) = 0, $c^T = (1 \ 0)$,

$$A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right),$$

and

$$b = \left(\begin{array}{c} 0 \\ 1 \end{array}\right).$$

The solution y(t) can be written as

$$y(t) = \int_0^t c^T e^{A(t-\tau)} bu(\tau) d\tau.$$

(a) Assume $u(t) = \alpha + \beta t$ for $\alpha, \beta \in \mathbb{R}$, calculate y(t) in terms of α and β and show that it is a polynomial of degree ≤ 3 , i.e.

$$y(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3.$$

(b) Define a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 as follows

$$T: \mathbb{R}^2 \to \mathbb{R}^4$$

where

$$\left(\begin{array}{c} \alpha \\ \beta \end{array}\right) \longmapsto \left(\begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array}\right).$$

Calculate the range and the null space of T.

6. Let us define

$$A = \left(\begin{array}{cc} -2 & 1 \\ 0 & -3 \end{array} \right), \ b = \left(\begin{array}{c} 0 \\ 1 \end{array} \right).$$

Recall that an ordinary differential equation

$$\dot{x} = Ax + bu, x(0) = 0$$

has the following solution

$$x(t) = \int_0^t e^{A(t-\tau)} bu(\tau) d\tau.$$

At t = 1, it follows that

$$x(1) = \int_0^1 e^{A(1-\tau)} bu(\tau) d\tau,$$

where $x(1) \in \mathbb{R}^2$, and $u(\tau)$ is a function defined in the interval $[0 \ 1]$.

- (a) Calculate x(1) for $u(\tau) = 1, \tau \in [0 \ 1]$.
- (b) Calculate x(1) for $u(\tau) = \tau$, $\tau \in [0 \ 1]$.
- (c) Let c_1 and c_2 be two arbitrary real constants, we define

$$u(\tau) = b^T e^{-A^T \tau} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix},$$

and write x(1) as

$$x(1) = e^{A} \left[\int_{0}^{1} e^{-A\tau} b b^{T} e^{-A^{T}\tau} d\tau \right] \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix}.$$

i. Calculate the 2×2 matrix

$$M = \left[\int_0^1 e^{-A\tau} b b^T e^{-A^T \tau} d\tau \right]$$

and check its rank. Is it 2?

ii. Calculate the 2×2 matrix

$$M = \left[\int_0^1 e^{-A\tau} b b^T e^{-A^T \tau} d\tau \right]$$

taking the matrices A and b as

$$A=\left(\begin{array}{cc}-2&0\\0&-1\end{array}\right),\ b=\left(\begin{array}{cc}0\\1\end{array}\right),$$

and check its rank. Is it 2 or a 1?

iii. Choose

$$x(1) = \left(\begin{array}{c} 7\\ 9 \end{array}\right)$$

and taking M as in part (i), calculate

$$\left(\begin{array}{c}c_1\\c_2\end{array}\right) = M^{-1}e^{-A}x(1)$$

and hence calculate

$$u(\tau) = b^T e^{-A^T \tau} \left(\begin{array}{c} c_1 \\ c_2 \end{array} \right).$$

Remark: the constructed $u(\tau)$ is the forcing function (also called the control) that drives the state from $x(0) = (0 \ 0)^T$ to $x(1) = (7 \ 9)^T$

7. Let us define

$$A = \begin{pmatrix} -2 & 1 \\ 0 & -3 \end{pmatrix}, c^T = \begin{pmatrix} 1 & 0 \end{pmatrix},$$

and consider an ordinary differential equation of the form

$$\dot{x} = Ax, y = c^T x, x(0) = x_0.$$

Recall that y(t) is given as follows

$$y(t) = c^T e^{At} x_0.$$

(a) Calculate y(t) assuming

$$x_0 = \left(\begin{array}{c} 5 \\ 7 \end{array}\right).$$

(b) We would now like to calculate x_0 given y(t). This is done as follows:

$$y(t) = c^T e^{At} x_0$$

implies that

$$cy(t) = cc^T e^{At} x_0$$

which further implies that

$$e^{A^T t} c y(t) = e^{A^T t} c \ c^T e^{At} x_0.$$

Integrating both sides with respect to t in the interval $\begin{bmatrix} 0 & 1 \end{bmatrix}$ we obtain

$$\int_0^1 e^{A^Tt} cy(t) dt = \left[\int_0^1 e^{A^Tt} c \ c^T e^{At} dt \right] x_0.$$

i. Calculate the 2×2 matrix N given by

$$N = \left[\int_0^1 e^{A^T t} c \ c^T e^{At} dt \right]$$

and check its rank. Is it 2?

ii. Choose y(t) in part (a) and calculate

$$\xi = \int_0^1 e^{A^T t} cy(t) dt.$$

iii. Writing $\xi = Nx_0$, calculate $x_0 = N^{-1}\xi$.

The matrices M and N in the problems 6 and 7 are called 'Controllability' and 'Observability' Gramians respectively.

4